2022-2023学年广西合浦县中考冲刺卷数学试题含解析.doc

上传人:茅**** 文档编号:87796438 上传时间:2023-04-17 格式:DOC 页数:20 大小:904.50KB
返回 下载 相关 举报
2022-2023学年广西合浦县中考冲刺卷数学试题含解析.doc_第1页
第1页 / 共20页
2022-2023学年广西合浦县中考冲刺卷数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022-2023学年广西合浦县中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西合浦县中考冲刺卷数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如下图所示,该几何体的俯视图是 ( )ABCD2计算6

2、m6(-2m2)3的结果为()ABCD3如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )ABCD4如图,l1l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=()A5:2B4:3C2:1D3:25一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是( )ABCD6如图,点A、B、C是O上的三点,且四边形ABCO是平行四边形,OFOC交圆O于点F,则BAF等于()A12.5B15C20D22.57五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A2、40 B42、38 C40、42 D42

3、、408如图,在ABC中,AB=AC,AD和CE是高,ACE=45,点F是AC的中点,AD与FE,CE分别交于点G、H,BCE=CAD,有下列结论:图中存在两个等腰直角三角形;AHECBE;BCAD=AE2;SABC=4SADF其中正确的个数有()A1B2C3D49计算5x23x2的结果是( )A2x2B3x2C8x2D8x210对于反比例函数y=,下列说法不正确的是()A图象分布在第二、四象限B当x0时,y随x的增大而增大C图象经过点(1,2)D若点A(x1,y1),B(x2,y2)都在图象上,且x1x2,则y1y2二、填空题(本大题共6个小题,每小题3分,共18分)11若一组数据1,2,3

4、,的平均数是2,则的值为_12一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_个13用换元法解方程,设y=,那么原方程化为关于y的整式方程是_14如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM若BAD=120,AE=2,则DM=_15双曲线、在第一象限的图像如图,过y2上的任意一点A,作x轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则

5、16如图,ABC中,A=80,B=40,BC的垂直平分线交AB于点D,联结DC如果AD=2,BD=6,那么ADC的周长为 三、解答题(共8题,共72分)17(8分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观根据调查数据制成了频 分组频数频率0.550.5 0.150.5 200.2100.5150.5 200.5300.3200.5250.5100.1率分布表和频率分布直方图(如图)(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD的面积是 ;这次调查的样本容量是 ;(

6、3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议试估计应对该校1000名学生中约多少名学生提出这项建议18(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)19(8分)某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器

7、共需210元()求这两种品牌计算器的单价;()开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式()某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由20(8分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式21(8分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点

8、为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且OMB=ONA时,求a的值22(10分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该

9、牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?23(12分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:整理、描述数据按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙 (说明:优秀成绩为,良好成绩为合格成绩为.)分析数据两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲

10、乙其中 .得出结论(1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取-名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;(至少从两个不同的角度说明推断的合理性)24如图所示,点C为线段OB的中点,D为线段OA上一点连结AC、BD交于点P(问题引入)(1)如图1,若点P为AC的中点,求的值温馨提示:过点C作CEAO交BD于点E(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:(问题解决)(3)如

11、图2,若AO=BO,AOBO,求tanBPC的值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据俯视图是从上面看到的图形解答即可.【详解】从上面看是三个长方形,故B是该几何体的俯视图.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.2、D【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案详解:原式=, 故选D点睛:本题主要考查的是幂的计算法则,属于基础题型明白幂的计算法则是解决这个问题的关键3、C

12、【解析】解:把点(0,2)(a,0)代入,得b=2则a=,解得:k2故选C【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大4、D【解析】依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值【详解】l1l2,设AG=3x,BD=5x,BC:CD=3:2,CD=BD=2x,AGCD,故选D【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例5、B【解析】根据反比例函数中

13、k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2(|k|)=1故选B【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|6、B【解析】解:连接OB,四边形ABCO是平行四边形, OC=AB,又OA=OB=OC, OA=OB=AB, AOB为

14、等边三角形, OFOC,OCAB, OFAB, BOF=AOF=30, 由圆周角定理得BAF=BOF=15故选:B7、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.8、C【解析】图中有3个等腰直角三角形,故结论错误;根据ASA证明即可,结论正确;利用面积法

15、证明即可,结论正确;利用三角形的中线的性质即可证明,结论正确.【详解】CEAB,ACE=45,ACE是等腰直角三角形,AF=CF,EF=AF=CF,AEF,EFC都是等腰直角三角形,图中共有3个等腰直角三角形,故错误,AHE+EAH=90,DHC+BCE=90,AHE=DHC,EAH=BCE,AE=EC,AEH=CEB=90,AHECBE,故正确,SABC=BCAD=ABCE,AB=AC=AE,AE=CE,BCAD=CE2,故正确,AB=AC,ADBC,BD=DC,SABC=2SADC,AF=FC,SADC=2SADF,SABC=4SADF故选C【点睛】本题考查相似三角形的判定和性质、等腰直角

16、三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题9、C【解析】利用合并同类项法则直接合并得出即可【详解】解: 故选C.【点睛】此题主要考查了合并同类项,熟练应用合并同类项法则是解题关键10、D【解析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解【详解】A. k=20,它的图象在第二、四象限,故本选项正确;B. k=20时,y随x的增大而增大,故本选项正确;C.,点(1,2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x10 x2,则y2y1,故本选项错误.故选:D.【点睛】考查了反比例

17、函数的图象与性质,掌握反比例函数的性质是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据这组数据的平均数是1和平均数的计算公式列式计算即可【详解】数据1,1,3,的平均数是1,解得:故答案为:1【点睛】本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键12、8【解析】试题分析:设红球有x个,根据概率公式可得,解得:x8.考点:概率.13、6y2-5y+2=0【解析】根据y,将方程变形即可【详解】根据题意得:3y,得到6y25y20故答案为6y25y20【点睛】此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键14、

18、【解析】作辅助线,构建直角DMN,先根据菱形的性质得:DAC=60,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长【详解】解:过M作MNAD于N,四边形ABCD是菱形, EFAC,AE=AF=2,AFM=30,AM=1,RtAMN中,AMN=30, AD=AB=2AE=4, 由勾股定理得: 故答案为【点睛】本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30所对的直角边是斜边的一半15、【解析】设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,)ACy轴,AEx轴,C点坐标为(0,),B点的纵坐标为,

19、E点坐标为(a,0),D点的横坐标为aB点、D点在上,当y=时,x=;当x=a,y=B点坐标为(,),D点坐标为(a,)AB=a=,AC=a,AD=,AE=AB=AC,AD=AE又BAD=CAD,BADCAD16、1.【解析】试题分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得BCD的度数,继而求得ADC的度数,则可判定ACD是等腰三角形,继而求得答案试题解析:BC的垂直平分线交AB于点D,CD=BD=6,DCB=B=40,ADC=B+BCD=80,ADC=A=80,AC=CD=6,ADC的周长为:AD+DC+AC=2+6+6=1考点:1.线段垂直平分线的性质;

20、2.等腰三角形的判定与性质三、解答题(共8题,共72分)17、表格中依次填10,100.5,25,0.25,150.5,1;0.25,100;1000(0.3+0.1+0.05)=450(名)【解析】(1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5; 0.5-50.5的频数=1000.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=1000.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为500.25=12.5,这次调查的样本容量是100;(3)先求得消费在15

21、0元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议【详解】解:填表如下:(2)长方形ABCD的面积为0.25,样本容量是100;提出这项建议的人数人【点睛】本题考查了频数分布表,样本估计总体、样本容量等知识注意频数分布表中总的频率之和是118、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CHAB于点H,如图所示,BC=12k

22、m,B=30,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km,DMA=90,B=45,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.19、(1)A种品牌计算器50元/个,B种品牌计算器60元/个;(2)y1=45x, y2= ;(3)详见解

23、析.【解析】(1)根据题意列出二元一次方程组并求解即可;(2)按照“购买所需费用=折扣单价数量”列式即可,注意B品牌计算器的采购要分0x10和x10两种情况考虑;(3)根据上问所求关系式,分别计算当x15时,由y1=y2、y1y2、y1y2确定其分别对应的销量范围,从而确定方案.【详解】()设A、B两种品牌的计算器的单价分别为a元、b元,根据题意得,解得:,答:A种品牌计算器50元/个,B种品牌计算器60元/个;()A品牌:y1=50x0.9=45x;B品牌:当0x10时,y2=60x,当x10时,y2=1060+60(x10)0.7=42x+180,综上所述:y1=45x,y2=;()当y1

24、=y2时,45x=42x+180,解得x=60,即购买60个计算器时,两种品牌都一样;当y1y2时,45x42x+180,解得x60,即购买超过60个计算器时,B品牌更合算;当y1y2时,45x42x+180,解得x60,即购买不足60个计算器时,A品牌更合算,当购买数量为15时,显然购买A品牌更划算.【点睛】本题考查了二元一次方程组的应用.20、答案见解析【解析】试题分析:连接BD,由已知可得MN是BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.试题解析:连接BD,点M、N分别是边DC、BC的中点,MN是BCD的中位线,MNBD,MN= BD, , .21、(1)D(2,2);(

25、2);(3)【解析】(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AEOD,可证AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tanOMB=tanONA,得到比例式,代入数值即可求得a的值.【详解】(1)当x=0时,A点的坐标为(0,2)顶点B的坐标为:(1,2-a),对称轴

26、为x= 1,点A与点D关于对称轴对称D点的坐标为:(2,2)(2)设直线BD的解析式为:y=kx+b把B(1,2-a)D(2,2)代入得: ,解得:直线BD的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=M点的坐标为:(3)由D(2,2)可得:直线OD解析式为:y=x设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得: 解得:直线AB的解析式为y= -ax+2联立成方程组: ,解得:N点的坐标为:()ON=()过A点作AEOD于E点,则AOE为等腰直角三角形.OA=2OE=AE=,EN=ON-OE=()-=)M,C(1,0), B(1,2-a)MC=

27、,BE=2-aOMB=ONAtanOMB=tanONA,即解得:a=或抛物线开口向下,故a0, a=舍去,【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.22、(1)150人;(2)补图见解析;(3)144;(4)300盒【解析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘

28、以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有3020%150人;(2)C类别人数为150(30+45+15)60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360144故答案为144(4)600()300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.23、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析【解析】首先根据乙校的成绩结合众数的定义即可得出a的值;(1)根据两个学校成绩的中位数进一步判断即可;

29、(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;(3)根据题意,从平均数以及中位数两方面加以比较分析即可.【详解】由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,a=80,故答案为:80;(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,小明这次竞赛得了分,在他们学校排名属中游略偏上,小明为甲校学生,故答案为:甲;(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,故答案为:;(3)乙校竞赛成绩较好,理由如下:因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所

30、述,乙校竞赛成绩较好.【点睛】本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.24、(1);(2) 见解析;(3) 【解析】(1)过点C作CEOA交BD于点E,即可得BCEBOD,根据相似三角形的性质可得,再证明ECPDAP,由此即可求得的值;(2)过点D作DFBO交AC于点F,即可得,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得A=APD=BPC,所以tanBPC=tanA=【详解】(1)如图1,过点C作CEOA交BD于点E,BCEBOD,=,又BC=BO,CE=DOCEOA,ECP=DAP,又EPC=DPA,PA=PC,ECPDAP,AD=CE=DO,即 =;(2)如图2,过点D作DFBO交AC于点F,则 =, =点C为OB的中点,BC=OC,=;(3)如图2,=,由(2)可知=设AD=t,则BO=AO=4t,OD=3t,AOBO,即AOB=90,BD=5t,PD=t,PB=4t,PD=AD,A=APD=BPC,则tanBPC=tanA=【点睛】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁