《2022-2023学年广东省中学山市四中学中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省中学山市四中学中考数学五模试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1把不等式组的解集表示在数轴上,正确的是()ABCD2已知点M (2,3 )在双曲线上,则下列一定在该双曲线上的是( )A(3,-2 )B(-2,-3 )C(2,3 )D(3,2)3下列说法中,正确的是( )A两个全等三角形,一定是轴对称的B两
2、个轴对称的三角形,一定是全等的C三角形的一条中线把三角形分成以中线为轴对称的两个图形D三角形的一条高把三角形分成以高线为轴对称的两个图形4如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为( )A4B6C8D1054的平方根是( )A16B2C2D6如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()AABCADC,BADBCDBABBCCABCD,ADBCDDAB+BCD1807在一个不透明的口袋中装有4个红球和若干个白
3、球,他们除颜色外其他完全相同通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A16个B15个C13个D12个8如图的立体图形,从左面看可能是()ABCD9下列判断正确的是()A任意掷一枚质地均匀的硬币10次,一定有5次正面向上B天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C“篮球队员在罚球线上投篮一次,投中”为随机事件D“a是实数,|a|0”是不可能事件10七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学
4、身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是161D两组相比,乙组同学身高的方差大11如图,等边ABC内接于O,已知O的半径为2,则图中的阴影部分面积为( )A B C D12已知点A(0,4),B(8,0)和C(a,a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()ABCD2二、填空题:(本大题共6个小题,每小题4分,共24分)13的相反数是_14_15若正n边形的内角为,则边数n为_.16二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3An在y轴的正半轴上,点B1,B2,B3Bn在二次函数位于第一象限的图象上,点C1,C2,C3
5、Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3四边形An1BnAnCn都是菱形,A0B1A1=A1B2A1=A2B3A3=An1BnAn=60,菱形An1BnAnCn的周长为 17若2x+y=2,则4x+1+2y的值是_18如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,AEQ沿EQ翻折形成FEQ,连接PF,PD,则PF+PD的最小值是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体
6、向上测试,并对成绩进行了统计,绘制出如下的统计图和图,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为 ,图中m的值为 ;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标20(6分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF求证:四边形ACDF是平行四边形;当CF平分BCD时,写出BC与CD的数量关系,并说明理由21(6分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在
7、河对岸D处测得ADP=60,然后沿河岸走了110米到达C处,测得BCP=30,求这条河的宽(结果保留根号)22(8分)如图,在RtABC中,C90,以BC为直径的O交AB于点D,过点D作O的切线DE交AC于点E(1)求证:AADE;(2)若AB25,DE10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S(用含字母a的式子表示)23(8分)如图1,抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连
8、接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值24(10分)某企业为杭州计算机产业基地提供电脑配件受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1x9,且x取整数)之间的函数关系如下表:月份x123456789价格y1(元/件)560580600620640660680700720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10x12,且x取整数)之间
9、存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1x9,且x取整数),10至12月的销售量p2(万件)p2=0.1x+2.9(10x12,且x取整数)求去年哪个月销售该配件的利润最大,并求出这个最大利润25(10分)如图1,已知抛物线y=x2+x+与x轴交于A,B两点(点A在点
10、B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DHx轴于点H,过点A作AEAC交DH的延长线于点E(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当CPF的周长最小时,MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的CFP沿直线AE平移得到CFP,将CFP沿CP翻折得到CPF,记在平移过称中,直线FP与x轴交于点K,则是否存在这样的点K,使得FFK为等腰三角形?若存在求出OK的值;若不存在,说明理由26(12分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,
11、PO的延长线交BC于Q(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形27(12分)先化简:(),再从2,1,0,1这四个数中选择一个合适的数代入求值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可【详解】解:由x20,得x2,由x+10,得x1,所以不等式组无解,故选B【点睛】解不等式组时要注意解集的确定原则:同大取大
12、,同小取小,大小小大取中间,大大小小无解了2、A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)3=-6,四个答案中只有A符合条件故选A3、B【解析】根据轴对称图形的概念对各选项分析判断即可得解解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B. 两个轴对称的三角形,一定全等,正确;C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.故选B.4、C【解析】根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,CEF的面积=CFCE【详解】解:
13、由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,因为BCDE,所以BF:DE=AB:AD,所以BF=2,CF=BC-BF=4,所以CEF的面积=CFCE=8;故选:C点睛:本题利用了:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;矩形的性质,平行线的性质,三角形的面积公式等知识点5、C【解析】试题解析:(2)2=4,4的平方根是2,故选C考点:平方根.6、D【解析】首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形所以根据菱形的性质
14、进行判断【详解】解:四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,四边形是平行四边形(对边相互平行的四边形是平行四边形);过点分别作,边上的高为,则(两纸条相同,纸条宽度相同);平行四边形中,即,即故正确;平行四边形为菱形(邻边相等的平行四边形是菱形),(菱形的对角相等),故正确;,(平行四边形的对边相等),故正确;如果四边形是矩形时,该等式成立故不一定正确故选:【点睛】本题考查了菱形的判定与性质注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”7、D【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】解:设白球个数为:x
15、个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%, ,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个故选:D【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键8、A【解析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.9、C【解析】直接利用概率的意义以及随机事件的定义分别分析得出答案【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天
16、的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|0”是必然事件,故此选项错误故选C【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键10、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计
17、算公式是解题的关键11、A【解析】解:连接OB、OC,连接AO并延长交BC于H,则AHBCABC是等边三角形,BH=AB=,OH=1,OBC的面积= BCOH=,则OBA的面积=OAC的面积=OBC的面积=,由圆周角定理得,BOC=120,图中的阴影部分面积=故选A点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键12、B【解析】首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可【详解】AB的中点D的坐标是(4,-2),C(a,-a)在一次函数y=-x上,
18、设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1根据题意得:,解得:,则交点的坐标是(3,-3)则这个圆的半径的最小值是:=故选:B【点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】的相反数是.故答案为.【点睛】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.14、【解析】根据去括号法则和合并同类二次根式法则计算即
19、可【详解】解:原式故答案为:【点睛】此题考查的是二次根式的加减运算,掌握去括号法则和合并同类二次根式法则是解决此题的关键15、9【解析】分析:根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.详解:由题意可得:140n=180(n-2),解得:n=9.故答案为:9.点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).16、4n【解析】试题解析:四边形A0B1A1C1是菱形,A0B1A1=60,A0B1A1是等边三角形设A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:,解得m1=0(舍去
20、),m1=1;故A0B1A1的边长为1,同理可求得A1B2A2的边长为2,依此类推,等边An-1BnAn的边长为n,故菱形An-1BnAnCn的周长为4n考点:二次函数综合题17、1【解析】分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案详解:原式=2(2x+y)+1=22+1=1点睛:本题主要考查的是整体思想求解,属于基础题型找到整体是解题的关键18、1【解析】如图作点D关于BC的对称点D,连接PD,ED,由DP=PD,推出PD+PF=PD+PF,又EF=EA=2是定值,即可推出当E、F、P、D共线时,PF+PD定值最小,最小值=EDEF【详解】如图作点D关于BC
21、的对称点D,连接PD,ED,在RtEDD中,DE=6,DD=1,ED=10,DP=PD,PD+PF=PD+PF,EF=EA=2是定值,当E、F、P、D共线时,PF+PD定值最小,最小值=102=1,PF+PD的最小值为1,故答案为1【点睛】本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标【解析】分析:()根据4次的人数及其百分比可得总人
22、数,用6次的人数除以总人数求得m即可; ()根据平均数、众数、中位数的定义求解可得; ()总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得详解:()本次抽测的男生人数为1020%=50,m%=100%=1%,所以m=1 故答案为50、1; ()平均数为=5.16次,众数为5次,中位数为=5次; ()350=2答:估计该校350名九年级男生中有2人体能达标点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据20、(1)证明见解析;(2)BC=2CD,理由见解析.【解析】分析:(1)利用矩形的性质,即可判定FAECDE,即
23、可得到CD=FA,再根据CDAF,即可得出四边形ACDF是平行四边形;(2)先判定CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD详解:(1)四边形ABCD是矩形,ABCD,FAE=CDE,E是AD的中点,AE=DE,又FEA=CED,FAECDE,CD=FA,又CDAF,四边形ACDF是平行四边形;(2)BC=2CD证明:CF平分BCD,DCE=45,CDE=90,CDE是等腰直角三角形,CD=DE,E是AD的中点,AD=2CD,AD=BC,BC=2CD点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平
24、行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的21、米.【解析】试题分析:根据矩形的性质,得到对边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.试题解析:作AEPQ于E,CFMN于F.PQMN,四边形AECF为矩形,EC=AF,AE=CF.设这条河宽为x米,AE=CF=x.在RtAED中, PQMN, 在RtBCF中, EC=ED+CD,AF=AB+BF, 解得 这条河的宽为米.22、(1)见解析;(2)75a.【解析
25、】(1)连接CD,求出ADC=90,根据切线长定理求出DE=EC,即可求出答案;(2)连接CD、OD、OE,求出扇形DOC的面积,分别求出ODE和OCE的面积,即可求出答案【详解】(1)证明:连接DC,BC是O直径,BDC=90,ADC=90,C=90,BC为直径,AC切O于C,过点D作O的切线DE交AC于点E,DE=CE,EDC=ECD,ACB=ADC=90,A+ACD=90,ADE+EDC=90,A=ADE;(2)解:连接CD、OD、OE,DE=10,DE=CE,CE=10,A=ADE,AE=DE=10,AC=20,ACB=90,AB=25,由勾股定理得:BC=15,CO=OD=,的长度是
26、a,扇形DOC的面积是a=a,DE、EC和弧DC围成的部分的面积S=10+10a=75a【点睛】本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键23、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标
27、为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+
28、2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1
29、,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.24、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元【
30、解析】(1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;(2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润【详解】(1)利用表格得出函数关系是一次函数关系:设y1=kx+b, 解得:y1=20x+540,利用图象得出函数关系是一次函数关系:设y2=ax+c, 解得: y2=10x+1 (2)去年1至9月时,销售该配件的利润w=p1(10005030y1),=(0.1x+1.1)(1000503020x540)=2x2+16x+418,=2( x4)2+450,(1x9,且x取整数)20,1x9,当x=4时,w最大=450(万元); 去年10至1
31、2月时,销售该配件的利润w=p2(10005030y2)=(0.1x+2.9)(1000503010x1),=( x29)2,(10x12,且x取整数),10x12时,当x=10时,w最大=361(万元),450361,去年4月销售该配件的利润最大,最大利润为450万元【点睛】此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键25、 (1)2 ;(2) ;(3)见解析.【解析】分析:(1)根据解析式求得C的坐标,进而求得D的坐标,即可求得DH的长度,令y=0,求得A,B的坐标,然后证得ACOEAH,根据对应边成比例求得EH的长,进继而求得DE的长;(2
32、)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(-2,-),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,CPF周长=CF+PF+CP=GF+PF+PN最小,根据点的坐标求得直线GN的解析式:y=x-;直线AE的解析式:y= -x-,过点M作y轴的平行线交FH于点Q,设点M(m,-m+m+),则Q(m,m-),根据SMFP=SMQF+SMQP,得出SMFP= -m+m+,根据解析式即可求得,MPF面积的最大值;(3)由(2)可知C(0,),F(0,),P(2,),求得CF=,CP=,进而得出CFP为等边三角形,边长为,翻折之后形成边长为的菱形CFPF,且FF=
33、4,然后分三种情况讨论求得即可本题解析:(1)对于抛物线y=x2+x+,令x=0,得y=,即C(0,),D(2,),DH=,令y=0,即x2+x+=0,得x1=1,x2=3,A(1,0),B(3,0),AEAC,EHAH,ACOEAH,=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(2,),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,CPF周长=CF+PF+CP=GF+PF+PN最小,直线GN的解析式:y=x;直线AE的解析式:y=x,联立得:F (0,),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,m2
34、+m+),则Q(m, m),(0m2);SMFP=SMQF+SMQP=MQ2=MQ=m2+m+,对称轴为:直线m=2,开口向下,m=时,MPF面积有最大值: ;(3)由(2)可知C(0,),F(0,),P(2,),CF=,CP=,OC=,OA=1,OCA=30,FC=FG,OCA=FGA=30,CFP=60,CFP为等边三角形,边长为,翻折之后形成边长为的菱形CFPF,且FF=4,1)当K F=KF时,如图3,点K在FF的垂直平分线上,所以K与B重合,坐标为(3,0),OK=3; 2)当FF=FK时,如图4,FF=FK=4,FP的解析式为:y=x,在平移过程中,FK与x轴的夹角为30,OAF=
35、30,FK=FAAK=4OK=41或者4+1;3)当FF=FK时,如图5,在平移过程中,FF始终与x轴夹角为60,OAF=30,AFF=90,FF=FK=4,AF=8,AK=12,OK=1,综上所述:OK=3,41,4+1或者1点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.26、(1)证明见解析(2) 【解析】试题分析:(1)先根据四边形ABCD是矩形,得出ADBC,PDO=QBO,再根据O为BD的中点得出PODQOB,即可证得OP=OQ;(2)
36、根据已知条件得出A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形试题解析:(1)证明:因为四边形ABCD是矩形,所以ADBC,所以PDO=QBO,又因为O为BD的中点,所以OB=OD,在POD与QOB中,PDO=QBO,OB=OD,POD=QOB,所以PODQOB,所以OP=OQ(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以A=90,在RtABP中,由勾股定理得:,即,解得:t=,即运动时间为秒时,四边形PBQD是菱形考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理27、,1【解析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可【详解】原式=由题意,x不能取1,1,2,x取2当x=2时,原式=1【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键