黑龙江铁力市四中学2022-2023学年中考数学四模试卷含解析.doc

上传人:茅**** 文档编号:88315145 上传时间:2023-04-25 格式:DOC 页数:19 大小:1.43MB
返回 下载 相关 举报
黑龙江铁力市四中学2022-2023学年中考数学四模试卷含解析.doc_第1页
第1页 / 共19页
黑龙江铁力市四中学2022-2023学年中考数学四模试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《黑龙江铁力市四中学2022-2023学年中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江铁力市四中学2022-2023学年中考数学四模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1抛物线的顶点坐标是( )A(2,3)B(-2,3)C(2,-3)D(-2,-3)26的绝对值是( )A6B6CD3已知点M (2,3 )在双曲线上,则下列一定在该双曲线上的是( )A(3,-2 )B(-2,-3 )C(2,3 )D(3,2)4如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()ABCD5施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务设原计划每天施工x米,所列方程正确的是()A=

3、2B=2C=2D=26如图,与1是内错角的是( )A2 B3C4 D57如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,ABG46,则FAE的度数是()A26B44C46D728下列美丽的壮锦图案是中心对称图形的是()ABCD9tan30的值为()ABCD10已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若nm,则( )Aa0且4a+b=0Ba0且4a+b=0Ca0且2a+b=0Da0且2a+b=0二、填空题(共7小题,每小题3分,满分21分)11如图,等腰ABC中,AB=AC,DBC=15,AB的垂直平分线MN交AC于点D,则A的度数是 12如图

4、,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕O圆周旋转时,点F的运动轨迹是_图形132的平方根是_.14含45角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为_15分解因式:ax2a=_162018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_. 17有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 三、解答题(共7小题,满

5、分69分)18(10分)现有一次函数ymx+n和二次函数ymx2+nx+1,其中m0,若二次函数ymx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式若一次函数ymx+n经过点(2,0),且图象经过第一、三象限二次函数ymx2+nx+1经过点(a,y1)和(a+1,y2),且y1y2,请求出a的取值范围若二次函数ymx2+nx+1的顶点坐标为A(h,k)(h0),同时二次函数yx2+x+1也经过A点,已知1h1,请求出m的取值范围19(5分)在平面直角坐标系中,已知抛物线经过A(4,0),B(0,4),C(2,0)三点(1)求抛物线解析式;(2)若点M为第三象限内抛物线上一

6、动点,点M的横坐标为m,MOA的面积为S求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?(3)若点Q是直线y=x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标20(8分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数小马虎根据竞赛成绩,绘制了如图所示的统计图经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到

7、合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛预赛分为A、B、C、D四组进行,选手由抽签确定张明、李刚两名同学恰好分在同一组的概率是多少?21(10分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由22(10分)如图,已

8、知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点E(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由23(12分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30,亭B在

9、点M的北偏东60,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.24(14分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点点B,C的坐标分别为_,_;是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;连接PB,若E为PB的中点,连接OE,则OE的最大值_参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】已知解析式为顶点式,可直接根据顶

10、点式的坐标特点,求顶点坐标【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h2、A【解析】试题分析:1是正数,绝对值是它本身1故选A考点:绝对值3、A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)3=-6,四个答案中只有A符合条件故选A4、D【解析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片

11、的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.5、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间实际所用时间=2,列出方程即可详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程6、B【解析】由内错角定义选B.7、A【解析】先根据正五边形的性质求出EAB的度数,再由平行线的性质即可得出结论【详解】解:图中是正五边形EAB108太阳光线互相

12、平行,ABG46,FAE180ABGEAB1804610826故选A【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出EAB.8、A【解析】【分析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.9、D【解析】直接利用特殊角的三角函数值求解即可【详解】tan3

13、0,故选:D【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键10、A【解析】由图像经过点(0,m)、(4、m)可知对称轴为x=2,由nm知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】图像经过点(0,m)、(4、m)对称轴为x=2,则,4a+b=0图像经过点(1,n),且nm抛物线的开口方向向上,a0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.二、填空题(共7小题,每小题3分,满分21分)11、50【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得A=A

14、BD,然后表示出ABC,再根据等腰三角形两底角相等可得C=ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】MN是AB的垂直平分线,AD=BD. A=ABD.DBC=15,ABC=A+15.AB=AC,C=ABC=A+15.A+A+15+A+15=180,解得A=50故答案为5012、圆【解析】根据题意作图,即可得到点F的运动轨迹.【详解】如图,根据题意作下图,可知F的运动轨迹为圆O.【点睛】此题主要考查动点的作图问题,解题的关键是根据题意作出相应的图形,方可判断.13、【解析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根)【详解】解:2的平方根是故答案为【点睛】本题考查

15、了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根14、【解析】过C作CDx轴于点D,则可证得AOBCDA,可求得CD和OD的长,可求得C点坐标,利用待定系数法可求得直线BC的解析式【详解】如图,过C作CDx轴于点DCAB=90,DAC+BAO=BAO+ABO=90,DAC=ABO在AOB和CDA中,AOBCDA(AAS)A(2,0),B(0,1),AD=BO=1,CD=AO=2,C(3,2),设直线BC解析式为y=kx+b,解得:,直线BC解析式为yx+1故答案为yx+1【点睛】本题考查了待定系数法及全等三角形的判定和性质,构造全等三角形求得C点坐标是解题

16、的关键15、【解析】先提公因式,再套用平方差公式.【详解】ax2a=a(x2-1)=故答案为:【点睛】掌握因式分解的一般方法:提公因式法,公式法.16、【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:61,故答案为:61【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值17、【解析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可【详解】有6张卡片,每张卡片

17、上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是故答案为【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共7小题,满分69分)18、(1)yx2,y=x2+1;(2)a;(3)m2或m1【解析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n2m,利用m与n的关系能求出二次函数对称轴x1,由一次函数经过一、三象限可得m1,确定二次函数开口向上,此时当 y1y2,只需让a到对称轴的

18、距离比a1到对称轴的距离大即可求a的范围(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h,将得到的三个关系联立即可得到,再由题中已知1h1,利用h的范围求出m的范围【详解】(1)将点(2,1),(3,1),代入一次函数ymx+n中,解得,一次函数的解析式是yx2,再将点(2,1),(3,1),代入二次函数ymx2+nx+1,解得,二次函数的解析式是(2)一次函数ymx+n经过点(2,1),n2m,二次函数ymx2+nx+1的对称轴是x,对称轴为x1,又一次函数ymx+n图象经过第一、三象限,m1,y1y2,1a1+a1,a(3)ymx2+nx+1的顶点坐标为A(h,k),kmh

19、2+nh+1,且h,又二次函数yx2+x+1也经过A点,kh2+h+1,mh2+nh+1h2+h+1,又1h1,m2或m1【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法19、(1)y=x2+x4;(2)S关于m的函数关系式为S=m22m+8,当m=1时,S有最大值9;(3)Q坐标为(4,4)或(2+2,22)或(22,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形【解析】(1)设抛物线解析式为y ax2 bx c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;(2)利用抛

20、物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.【详解】解:(1)设抛物线解析式为y=ax2+bx+c,抛物线经过A(4,0),B(0,4),C(2,0),解得,抛物线解析式为y=x2+x4;(2)点M的横坐标为m,点M的纵坐标为m2+m4,又A(4,0),AO=0(4)=4,S=4|m2+m4|=(m2+2m8)=m22m+8,S=(m2+

21、2m8)=(m+1)2+9,点M为第三象限内抛物线上一动点,当m=1时,S有最大值,最大值为S=9;故答案为S关于m的函数关系式为S=m22m+8,当m=1时,S有最大值9;(3)点Q是直线y=x上的动点,设点Q的坐标为(a,a),点P在抛物线上,且PQy轴,点P的坐标为(a,a2+a4),PQ=a(a2+a4)=a22a+4,又OB=0(4)=4,以点P,Q,B,O为顶点的四边形是平行四边形,|PQ|=OB,即|a22a+4|=4,a22a+4=4时,整理得,a2+4a=0,解得a=0(舍去)或a=4,a=4,所以点Q坐标为(4,4),a22a+4=4时,整理得,a2+4a16=0,解得a=

22、22,所以点Q的坐标为(2+2,22)或(22,2+2),综上所述,Q坐标为(4,4)或(2+2,22)或(22,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形【点睛】本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.20、(1)见解析;(2)140人;(1). 【解析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图

23、,从而可以求得张明、李刚两名同恰好分在同一组的概率【详解】(1)由统计图可得:(1分)(2分)(4分)(5分)甲(人)01764乙(人)22584全体(%)512.5101517.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,25%=40,(1+2)12.5%=40,(7+5)10%=40,(6+8)15%=40,(4+4)17.5%40,故乙组得5分的人数统计有误,正确人数应为:4017.5%4=1(2)800(5%+12.5%)=140(人);(1)如图得:共有16种等可能的结果,所选两人正好分在一组的有4种情况,所选两人正好分在一组的概率是:【点睛】本题考查列表法与

24、树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件21、(1);y2=2250x;(2)甲、乙两个商场的收费相同时,所买商品为6件;(3)所买商品为5件时,应选择乙商场更优惠【解析】试题分析:(1)由两家商场的优惠方案分别列式整理即可;(2)由收费相同,列出方程求解即可;(3)由函数解析式分别求出x=5时的函数值,即可得解试题解析:(1)当x=1时,y1=3000;当x1时,y1=3000+3000(x1)(130%)=2100x+1;y2=3000x(125%)=2250x,y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+1=

25、2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+1=21005+1=11400,y2=2250x=22505=11250,1140011250,所买商品为5件时,应选择乙商场更优惠考点:一次函数的应用22、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【解析】利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE

26、的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论【详解】当时,有,解得:,点A的坐标为当时,点B的坐标为,解得:,抛物线的解析式为点A的坐标为,点B的坐标为,直线AB的解析式为点D的横坐标为x,则点D的坐

27、标为,点E的坐标为,如图点F的坐标为,点A的坐标为,点B的坐标为,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为,若要和相似,只需或如图设点D的坐标为,则点E的坐标为,当时,为等腰直角三角形,即,解得:舍去,点D的坐标为;当时,点E的纵坐标为4,解得:,舍去,点D的坐标为综上所述:存在点D,使得和相似,此时点D的坐标为或故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三

28、角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标23、1m【解析】连接AN、BQ,过B作BEAN于点E在RtAMN和在RtBMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角ABE中,依据勾股定理即可求得AB的长【详解】连接AN、BQ,点A在点N的正北方向,点B在点Q的正北方向,ANl,BQl,在RtAMN中:tanAMN=,AN=1,在RtBMQ中:tanBMQ=,BQ=30,过B作BEAN于点E,则BE=NQ=

29、30,AE=AN-BQ=30,在RtABE中,AB2=AE2+BE2,AB2(30)2+302,AB=1答:湖中两个小亭A、B之间的距离为1米【点睛】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题24、(1)B(1,0),C(0,4);(2)点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)【解析】试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)当PB与相切时,PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2Ex轴于E,P2Fy轴于F,根据相似三角形的性质得到

30、=2,设OC=P2E=2x,CP2=OE=x,得到BE=1x,CF=2x4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2),当BCPC时,PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大试题解析:(1)在中,令y=0,则x=1,令x=0,则y=4,B(1,0),C(0,4);故答案为1,0;0,4;(2)存在点P,使得PBC为直角三角形,分两种情况:当PB与相切时,PBC为直角三角形,如图(2)a,连接BC,OB=1OC=4,

31、BC=5,CP2BP2,CP2=,BP2=,过P2作P2Ex轴于E,P2Fy轴于F,则CP2FBP2E,四边形OCP2B是矩形,=2,设OC=P2E=2x,CP2=OE=x,BE=1x,CF=2x4, =2,x=,2x=,FP2=,EP2=,P2(,),过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2);当BCPC时,PBC为直角三角形,过P4作P4Hy轴于H,则BOCCHP4, =,CH=,P4H=,P4(,4);同理P1(,4);综上所述:点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)如图(1),连接AP,OB=OA,BE=EP,OE=AP,当AP最大时,OE的值最大,当P在AC的延长线上时,AP的值最大,最大值=,OE的最大值为故答案为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁