2022-2023学年北京五中高考仿真卷数学试卷含解析.doc

上传人:茅**** 文档编号:87796116 上传时间:2023-04-17 格式:DOC 页数:21 大小:2.20MB
返回 下载 相关 举报
2022-2023学年北京五中高考仿真卷数学试卷含解析.doc_第1页
第1页 / 共21页
2022-2023学年北京五中高考仿真卷数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022-2023学年北京五中高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年北京五中高考仿真卷数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设m,n为直线,、为平面,则的一个充分条件可以是( )A,B,C,D,2已知表示两条不同的直线,表示两

2、个不同的平面,且则“”是“”的( )条件.A充分不必要B必要不充分C充要D既不充分也不必要3若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是14对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;乙同学连续九次测验成绩每一次均有明显进步其中

3、正确的个数为()ABCD5在直角梯形中,点为上一点,且,当的值最大时,( )AB2CD6中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD7某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是

4、小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( )A小王或小李B小王C小董D小李8若直线不平行于平面,且,则( )A内所有直线与异面B内只存在有限条直线与共面C内存在唯一的直线与平行D内存在无数条直线与相交9己知集合,则( )ABCD 10设,则( )ABCD11已知,则的值构成的集合是( )ABCD12设分别为的三边的中点,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知为等差数列,为其前n项和,若,则_.14验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用

5、户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为_.15直线(,)过圆:的圆心,则的最小值是_.16已知,若,则a的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲

6、线上不同两点,如果在曲线上存在点,使得;曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由18(12分)如图,在四棱锥中,底面为等腰梯形,为等腰直角三角形,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.19(12分)已知各项均为正数的数列的前项和为,满足,恰为等比数列的前3项(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由20(12分)已知等比数列,其公比,且满足,和的等差中项是1()求数列

7、的通项公式;()若,是数列的前项和,求使成立的正整数的值21(12分)在中,a,b,c分别是角A,B,C的对边,并且.(1)已知_,计算的面积;请,这三个条件中任选两个,将问题(1)补充完整,并作答.注意,只需选择其中的一种情况作答即可,如果选择多种情况作答,以第一种情况的解答计分.(2)求的最大值.22(10分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据线面垂直的判断方法对选项

8、逐一分析,由此确定正确选项.【详解】对于A选项,当,时,由于不在平面内,故无法得出.对于B选项,由于,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.2、B【解析】根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件

9、,谁是结论.3、A【解析】根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增 在上单调递增,正确;的最小正周期为: 不是的周期,错误;当时,关于点对称,错误;当时, 此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求

10、函数的性质.4、C【解析】利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可【详解】甲同学的成绩折线图具有较好的对称性,最高分,平均成绩为低于分,错误;根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内,正确;乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,正确;乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故不正确故选:C【点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题5、B【解析】由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数

11、求出的最大值,即可求出.【详解】由题意,直角梯形中,可求得,所以点在线段上, 设 , 则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.6、A【解析】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。7、D【解析】根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只

12、有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【点睛】本题考查推理证明的实际应用.8、D【解析】通过条件判断直线与平面相交,于是可以判断ABCD的正误.【详解】根据直线不平行于平面,且可知直线与平

13、面相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.9、C【解析】先化简,再求.【详解】因为,又因为,所以,故选:C.【点睛】本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.10、D【解析】由不等式的性质及换底公式即可得解.【详解】解:因为,则,且,所以,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.11、C【解析】对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.12、

14、B【解析】根据题意,画出几何图形,根据向量加法的线性运算即可求解.【详解】根据题意,可得几何关系如下图所示:,故选:B【点睛】本题考查了向量加法的线性运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】试题分析:因为是等差数列,所以,即,又,所以,所以故答案为1【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.14、【解析】首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件

15、数,根据古典概型概率计算公式计算出所求概率.【详解】根据“钟型验证码” 中间数字最大,然后向两边对称递减,所以中间的数字可能是.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个

16、排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.所以该验证码的中间数字是7的概率为.故答案为:【点睛】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.15、;【解析】求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值【详解】圆:的标准方程为,圆心为,由题意,即,当且仅当 ,即时等号成立,故答案为:【点睛】本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求最

17、小值,目的是凑配出基本不等式中所需的“定值”16、【解析】函数等价为,由二次函数的单调性可得在R上递增,即为,可得a的不等式,解不等式即可得到所求范围【详解】,等价为,且时,递增,时,递增,且,在处函数连续,可得在R上递增,即为,可得,解得,即a的取值范围是故答案为:【点睛】本题考查分段函数的单调性的判断和运用:解不等式,考查转化思想和运算能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)不存在,见解析【解析】(1)求出函数的导数,通过讨论的范围求出函数的单调区间即可;(2)求出函数的导数,结合导数的几何意义,再令,转化为方程有解问题,即可说

18、明.【详解】(1)函数的定义域为,所以当时,;,所以函数在上单调递增当时,当时,函数在上递增,显然无增区间;当时, ,函数在上递增,综上当函数在上单调递增.当时函数在上单调递增;当时函数无单调递增区间当时函数在上单调递增(2)假设函数存在“中值相依切线”设是曲线上不同的两个点,且则曲线在点处的切线的斜率为,.令,则,单调递增,故无解,假设不成立综上,假设不成立,所以不存在“中值相依切线”【点睛】本题考查了函数的单调性,导数的几何意义,考查导数的应用以及分类讨论和转化思想,属于中档题18、(1)证明见解析;(2)【解析】(1)取的中点,连接,易得,进而可证明四边形为平行四边形,即,从而可证明平面

19、;(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系,进而求出平面的法向量,及平面的法向量为,由,可求得平面与平面所成的二面角的正弦值.【详解】(1)证明:如图1,取的中点,连接.,且,四边形为平行四边形,.又平面,平面,平面.(2)如图2,取中点,中点,连接.,平面平面,平面平面,平面,平面,两两垂直.以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系.由,可得,在等腰梯形中,易知,.则,设平面的法向量为,则,取,得.设平面的法向量为,则,取,得.因为,所以,所以平面与平面所成的二面角的正弦值为.【点

20、睛】本题考查线面平行的证明,考查二面角的求法,利用空间向量法是解决本题的较好方法,属于中档题.19、(2),(2),的最大整数是2(3)存在,【解析】(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,为等比数列,所以,化简计算得,从而得到数列的通项公式,再计算出 ,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,利用同样的方法可得.【详解】解:(2)由题,当时,即当时, -得,整理得,又因为各项均为正数的数列故是从第二项的等

21、差数列,公差为2又恰为等比数列的前3项,故,解得又,故,因为也成立故是以为首项,2为公差的等差数列故即2,4,8恰为等比数列的前3项,故是以为首项,公比为的等比数列,故综上,(2)令,则 所以数列是递增的,若对均满足,只要的最小值大于即可因为的最小值为,所以,所以的最大整数是2(3)由,得, -得, , -得,所以存在这样的数列,【点睛】此题考查了等差数列与等比数列的通项公式与求和公式,最值,恒成立问题,考查了推理能力与计算能力,属于中档题.20、 () .() .【解析】()由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(),由数列的错位相减法求和可得,解方

22、程可得所求值【详解】()等比数列,其公比,且满足,和的等差中项是即有,解得: ()由()知:则相减可得:化简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及方程思想和运算能力,属于中档题21、(1)见解析(2)1【解析】(1) 选,可得,结合,求得即可;若选,由可得由,求得即可;若选,可得,又,可得,即可;(2)化简,根据角的范围求最值即可【详解】(1)若选,又,的面积若选,由可得,又,的面积 若选,又,可得,的面积(2),当时,有最大值1【点睛】本题考查了正余弦定理,三角三角恒等变形,考查了计算能力,属于中档题22、(1);(2).【解析】

23、(1)求出,再求恒成立,以及恒成立时,的取值范围;(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.【详解】(1)由题意得,则,当函数在区间上单调递增时,在区间上恒成立.(其中),解得.当函数在区间上单调递减时,在区间上恒成立,(其中),解得.综上所述,实数的取值范围是.(2).由,知在区间内恰有一个零点,设该零点为,则在区间内不单调.在区间内存在零点,同理在区间内存在零点.在区间内恰有两个零点.由(1)易知,当时,在区间上单调递增,故在区间内至多有一个零点,不合题意.当时,在区间上单调递减,故在区间内至多有一个零点,不合题意,.令,得,函数在区间上单凋递减,在区间上单调递增.记的两个零点为,必有.由,得.又,.综上所述,实数的取值范围为.【点睛】本题考查导数的综合应用,涉及到函数的单调性、零点问题,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁