《2022-2023学年山东省济宁市泗水一中高考仿真卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省济宁市泗水一中高考仿真卷数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的公差为,前项和为,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数( ).A6B5C4D32已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上
2、且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )ABCD3在原点附近的部分图象大概是( )ABCD4设曲线在点处的切线方程为,则( )A1B2C3D45阿波罗尼斯(约公元前262190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,不共线时,的面积的最大值是( )ABCD6如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( )A向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵
3、坐标不变C向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变7 “”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件8已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为ABC2D9设则以线段为直径的圆的方程是( )ABCD10方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( )ABCD11设函数,则函数的图像可能为( )ABCD12已知整数满足,记点的坐标为,则点满足的概率为( )ABCD二、填空题
4、:本题共4小题,每小题5分,共20分。13已知下列命题:命题“x0R,”的否定是“xR,x213x”;已知p,q为两个命题,若“pq”为假命题,则“”为真命题;“a2”是“a5”的充分不必要条件;“若xy0,则x0且y0”的逆否命题为真命题其中所有真命题的序号是_14某校初三年级共有名女生,为了了解初三女生分钟“仰卧起坐”项目训练情况,统计了所有女生分钟“仰卧起坐”测试数据(单位:个),并绘制了如下频率分布直方图,则分钟至少能做到个仰卧起坐的初三女生有_个15已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_16在中,已知是的中点,且,点满足
5、,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)若恒成立,求实数的取值范围;(2)若方程有两个不同实根,证明:18(12分)山东省2020年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划
6、分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为、共8个等级。参照正态分布原则,确定各等级人数所占比例分别为、.等级考试科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科等级的原始分分布区间为5869,则该同学化学学科的原始成绩属等级.而等级的转换分区间为6170,那么该同学化学学科的转换分为:设该同学化学科的转换等级分为,求得.四舍五入后
7、该同学化学学科赋分成绩为67.(1)某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.(i)若小明同学在这次考试中物理原始分为84分,等级为,其所在原始分分布区间为8293,求小明转换后的物理成绩;(ii)求物理原始分在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记表示这4人中等级成绩在区间的人数,求的分布列和数学期望.(附:若随机变量,则,)19(12分)在如图所示的多面体中,平面平面,四边形是边长为2的菱形,四边形为直角梯形,四边形为平行四边形,且, ,(1)若分别为,的中点,求证:平面;(2)若,与平面
8、所成角的正弦值,求二面角的余弦值20(12分)已知函数f(x)|x2|x1|.()解不等式f(x)1;()当x0时,若函数g(x)(a0)的最小值恒大于f(x),求实数a的取值范围21(12分)已知抛物线和圆,倾斜角为45的直线过抛物线的焦点,且与圆相切(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设求证点在定直线上,并求该定直线的方程22(10分)如图,在四棱锥PABCD中,PA平面ABCD,ABCBAD90,ADAP4,ABBC2,M为PC的中点(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN,若直线MN与平面PBC所成角的正弦值为,求
9、的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【详解】由已知,又三角形有一个内角为,所以,解得或(舍),故,当时,取得最大值,所以.故选:C.【点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.2、B【解析】设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公式求解即可.【详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时
10、,当且仅当时取等号,此时,点在以为焦点的椭圆上,由椭圆的定义得,所以椭圆的离心率,故选B.【点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解3、A【解析】分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,则函数为奇函数,排除C、D选项;当时,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及
11、函数值符号,考查分析问题和解决问题的能力,属于中等题.4、D【解析】利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题5、A【解析】根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,则,化简得,当点到(轴)距离最大时,的面积最大,面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.6、A【解析】由函数的最大值求出,根据周期求出,由五点画法中的点
12、坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,又,又,为了得到这个函数的图象,只需将的图象上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.7、A【解析】首先利用二倍角正切公式由,求出,再根据充分条件、必要条件的定义判断即可;【详解】解:,可解得或,“”是“”的充分不必要条件.故选:A【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题8、B【解析】求得直线的方程,联立直线的方程和双曲线的方
13、程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.9、A【解析】计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.10、D【解析】由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【详解】解:由题意方程的实数根叫做
14、函数的“新驻点”,对于函数,由于,设,该函数在为增函数, ,在上有零点,故函数的“新驻点”为,那么故选:【点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题.11、B【解析】根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为: ,函数为偶函数,排除 ,排除 故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.12、D【解析】列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整
15、数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】命题“xR,x213x”的否定是“xR,x213x”,故错误;“pq”为假命题说明p假q假,则(p)(q)为真命题,故正确;a5a2,但a2/ a5,故“a2”是“a5”的必要不充分条件,故错误;因为“若xy0,则x0或y0”,所以原命题为假命题,故其逆否命题也为假命题,故错误14、【解析】根据数据先求出,再求出分钟至少能做到个仰卧起坐的初三女生人数即可.【详解】解:,.则分钟至少能做到个仰卧起坐的初三女生人数为.故答案为:.【点睛】本题主要
16、考查频率分布直方图,属于基础题.15、-1【解析】讨论三种情况,a0时,根据均值不等式得到a(a)14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(axa14)(x4)0,a0时,x(a)(x4)0,其中a0,故解集为(a,4),由于a(a)14,当且仅当a,即a1时取等号,a的最大值为4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为1;a0时,4(x4)0,解集为(,4),整数解有无穷多,故a0不符合条件; a0时,x(a)(x4)0,其中a4,故解集为(,4)(a,+),整数解有无穷多,故a0不符合条件;综上所述,a1故答案为:1【点睛】本题考查了解不等式,均值不等式
17、,意在考查学生的计算能力和综合应用能力.16、【解析】由中点公式的向量形式可得,即有,设,有,再分别讨论三点共线和不共线时的情况,找到的关系,即可根据函数知识求出范围【详解】是的中点,即设,于是(1)当共线时,因为,若点在之间,则,此时,;若点在的延长线上,则,此时,(2)当不共线时,根据余弦定理可得,解得,由,解得综上,故答案为:【点睛】本题主要考查学中点公式的向量形式和数量积的定义的应用,以及余弦定理的应用,涉及到函数思想和分类讨论思想的应用,解题关键是建立函数关系式,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析【解析】(1)将原不等式
18、转化为,构造函数,求得的最大值即可;(2)首先通过求导判断的单调区间,考查两根的取值范围,再构造函数,将问题转化为证明,探究在区间内的最大值即可得证【详解】解:(1)由,即,即,令,则只需,令,得,在上单调递增,在上单调递减,的取值范围是;(2)证明:不妨设,当时,单调递增,当时,单调递减,当时,要证,即证,由在上单调递增,只需证明,由,只需证明,令,只需证明,易知,由,故,从而在上单调递增,由,故当时,故,证毕【点睛】本题考查利用导数研究函数单调性,最值等,关键是要对问题进行转化,比如把恒成立问题转化为最值问题,把根的个数问题转化为图像的交点个数,进而转化为证明不等式的问题,属难题18、 (
19、1)(i)83.;(ii)272.(2)见解析.【解析】(1)根据原始分数分布区间及转换分区间,结合所给示例,即可求得小明转换后的物理成绩;根据正态分布满足,结合正态分布的对称性即可求得内的概率,根据总人数即可求得在该区间的人数。(2)根据各等级人数所占比例可知在区间内的概率为,由二项分布即可求得的分布列及各情况下的概率,结合数学期望的公式即可求解。【详解】(1)(i)设小明转换后的物理等级分为,求得.小明转换后的物理成绩为83分;(ii)因为物理考试原始分基本服从正态分布,所以.所以物理原始分在区间的人数为(人);(2)由题意得,随机抽取1人,其等级成绩在区间内的概率为,随机抽取4人,则.,
20、.的分布列为01234数学期望.【点睛】本题考查了统计的综合应用,正态分布下求某区间概率的方法,分布列及数学期望的求法,文字多,数据多,需要细心的分析和理解,属于中档题。19、 (1)见解析(2) 【解析】试题分析:(1)第(1)问,转化成证明平面 ,再转化成证明和.(2)第(2)问,先利用几何法找到与平面所成角,再根据与平面所成角的正弦值为求出再建立空间直角坐标系,求出二面角的余弦值.试题解析:(1)连接,因为四边形为菱形,所以.因为平面平面,平面平面,平面,所以平面.又平面,所以.因为,所以.因为,所以平面.因为分别为,的中点,所以,所以平面(2)设,由(1)得平面.由,得,.过点作,与的
21、延长线交于点,取的中点,连接,如图所示,又,所以为等边三角形,所以,又平面平面,平面平面,平面,故平面.因为为平行四边形,所以,所以平面.又因为,所以平面.因为,所以平面平面.由(1),得平面,所以平面,所以.因为,所以平面,所以是与平面所成角.因为,所以平面,平面,因为,所以平面平面.所以,解得.在梯形中,易证,分别以,的正方向为轴,轴,轴的正方向建立空间直角坐标系.则,由,及,得,所以,.设平面的一个法向量为,由得令,得m=(3,1,2) 设平面的一个法向量为,由得令,得.所以又因为二面角是钝角,所以二面角的余弦值是.20、();()。【解析】()分类讨论,去掉绝对值,求得原绝对值不等式的
22、解集;()由条件利用基本不等式求得,再由,求得的范围【详解】()当时,原不等式可化为,此时不成立;当时,原不等式可化为,解得,即;当时,原不等式可化为,解得.综上,原不等式的解集是 ()因为,当且仅当时等号成立,所以.当时,所以所以,解得,故实数的取值范围为【点睛】本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想21、(1);(2)点在定直线上【解析】(1)设出直线的方程为,由直线
23、和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心到直线的距离,即,解得或(舍去)所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为令,即交轴于点坐标为,所以, ,设点坐标为,则,所以点在定直线上【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的运算能力,属于综合题22、(1).(2)1【解析】(1)先根据题意
24、建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2,由AN,设N(0,0)(04),则(1,1,2),再求得平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为,由|cos,|求解.【详解】(1) 因为PA平面ABCD,且AB,AD平面ABCD,所以PAAB,PAAD.又因为BAD90,所以PA,AB,AD两两互相垂直分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,则由AD2AB2BC4,PA4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4)又因为M为PC的中点,所以M(1,1,2)所以(1,1,2),(0,0,4),所以cos,所以异面直线AP,BM所成角的余弦值为.(2) 因为AN,所以N(0,0)(04),则(1,1,2),(0,2,0),(2,0,4)设平面PBC的法向量为(x,y,z),则即令x2,解得y0,z1,所以(2,0,1)是平面PBC的一个法向量因为直线MN与平面PBC所成角的正弦值为,所以|cos,|,解得10,4,所以的值为1.【点睛】本题主要考查了空间向量法研究空间中线线角,线面角的求法及应用,还考查了转化化归的思想和运算求解的能力,属于中档题.