《2022-2023学年北京一六一中学高考冲刺数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年北京一六一中学高考冲刺数学模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的值域为( )ABCD2函数的图象大致为( )ABCD3已知,函数在区间内没有最值,给出下列四个结论:在上单调递增;在上没有零点;在上只有一个零点.其中所有正确结论的编号是( )ABCD4已知ABC中,点P为BC边上的动点,则的最小值为()A2B
2、CD5已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )ABCD6已知向量,则( )ABC()D( )7费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()ABCD8 “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作孙子算经卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,
3、则该数列各项之和为( )A56383B57171C59189D612429若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是110已知双曲线 (a0,b0)的右焦点为F,若过点F且倾斜角为60的直线l与双曲线的右支有且只有一个交点,则此双曲线的离心率e的取值范围是( )AB(1,2),CD11已知函数若存在实数,且,使得,则实数a的取值范围为( )ABCD12已知函数,且),则“在上是单调函数”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件二、填空
4、题:本题共4小题,每小题5分,共20分。13已知向量,满足,则的取值范围为_.14已知平面向量、的夹角为,且,则的最大值是_15已知数列为等差数列,数列为等比数列,满足,其中,则的值为_16在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,不等式恒成立.(1)求证:(2)求证:.18(12分)设函数().(1)讨论函数的单调性;(2)若关于x的方程有唯一的实数解,求a的取值范围.19(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合(1)求证:平面平面;(2)是
5、否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由20(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.21(12分)已知函数(1)若在处取得极值,求的值;(2)求在区间上的最小值;(3)在(1)的条件下,若,求证:当时,恒有成立22(10分)在中,角,的对边分别为,已知(1)若,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
6、1、A【解析】由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【详解】,因此,函数的值域为.故选:A.【点睛】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.2、A【解析】确定函数在定义域内的单调性,计算时的函数值可排除三个选项【详解】时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,排除C,只有A可满足故选:A.【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项3、A【解析】先根据函
7、数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解.【详解】因为函数在区间内没有最值.所以,或解得或.又,所以.令.可得.且在上单调递减.当时,且,所以在上只有一个零点.所以正确结论的编号 故选:A.【点睛】本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平.4、D【解析】以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值【详解】以BC的中点为坐标原点,建立如图的直角坐标系,可得,设,由,可得,即,则,当时,的最小值为故选D【点睛】本题考查向量数量积的坐标表示,
8、考查转化思想和二次函数的值域解法,考查运算能力,属于中档题5、D【解析】由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.6、D【解析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】向量(1,2),(3,1),和的坐标对应不成比例,故、不平行,故排除A;显然,3+20,故、不垂直,故排除B;(2,1),显然,和的坐标对应不成比例,故和不平行,故排除C;()2+20,故 (),故D正确,故选:D.【点睛】本题主要考查两个
9、向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.7、B【解析】基本事件总数,能表示为两个不同费马素数的和只有,共有个,根据古典概型求出概率【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题8、C【解析】根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则 令,解得.故该数列各项之和为.故选:C.
10、【点睛】本题考查等差数列的应用,属基础题。9、A【解析】根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增 在上单调递增,正确;的最小正周期为: 不是的周期,错误;当时,关于点对称,错误;当时, 此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,
11、通过正弦函数的图象来判断出所求函数的性质.10、A【解析】若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率根据这个结论可以求出双曲线离心率的取值范围【详解】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,离心率,故选:【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件11、D【解析】首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果.【详解】,令,得,其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使
12、得,则(如图1)或(如图2)(图1)(图2)于是可得,故选:D.【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.12、C【解析】先求出复合函数在上是单调函数的充要条件,再看其和的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案.【详解】,且),由得或,即的定义域为或,(且) 令,其在单调递减,单调递增,在上是单调函数,其充要条件为即.故选:C.【点睛】本题考查了复合函数的单调性的判断问题,充要条件的判断,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,由,
13、根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.【详解】设,如图所示:因为,所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,则即的距离,由图可知,.故答案为:【点睛】本题主要考查平面向量的模及运算的几何意义,还考查了数形结合的方法,属于中档题.14、【解析】建立平面直角坐标系,设,可得,进而可得出,由此将转化为以为自变量的三角函数,利用三角恒等变换思想以及正弦函数的有界性可得出结果.【详解】根据题意建立平面直角坐标系如图所示,设,以、为邻边作平行四边形,则,设,则,且,在中,由正弦定理
14、,得,即,在中,由正弦定理,得,即.,则,当时,取最大值.故答案为:.【点睛】本题考查了向量的数量积最值的计算,将问题转化为角的三角函数的最值问题是解答的关键,考查计算能力,属于难题15、【解析】根据题意,判断出,根据等比数列的性质可得,再令数列中的,根据等差数列的性质,列出等式,求出和的值即可.【详解】解:由,其中,可得,则,令,可得.又令数列中的,根据等差数列的性质,可得,所以.根据得出,.所以.故答案为.【点睛】本题主要考查等差数列、等比数列的性质,属于基础题.16、【解析】取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得, 由等腰直角三角形的性质,得,根据面面垂直的性质
15、得平面,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:【点睛】本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)先根据绝对值不等式求得的最大值,从而得到,再利用基
16、本不等式进行证明;(2)利用基本不等式变形得,两边开平方得到新的不等式,利用同理可得另外两个不等式,再进行不等式相加,即可得答案.【详解】(1),.,.(2),即两边开平方得.同理可得,.三式相加,得.【点睛】本题考查绝对值不等式、应用基本不等式证明不等式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和推理论证能力.18、(1)当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2)或.【解析】(1)求出,对分类讨论,先考虑(或)恒成立的范围,并以此作为的分类标准,若不恒成立,求解,即可得出结论;(2)有解,即,令,转化求函数只有一个实数解,根据(1)中的结论,即可求解.【详
17、解】(1),当时,恒成立,当时,综上,当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2),令,原方程只有一个解,只需只有一个解,即求只有一个零点时,的取值范围,由(1)得当时,在单调递增,且,函数只有一个零点,原方程只有一个解,当时,由(1)得在出取得极小值,也是最小值,当时,此时函数只有一个零点,原方程只有一个解,当且递增区间时,递减区间时;,当,有两个零点,即原方程有两个解,不合题意,所以的取值范围是或.【点睛】本题考查导数的综合应用,涉及到单调性、零点、极值最值,考查分类讨论和等价转化思想,属于中档题.19、(1)证明见解析 (2)存在,为中点【解析】(1)证明面,即证明
18、平面平面;(2)以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系利用向量方法得,解得,所以为中点【详解】(1)由于为中点,又,故,所以为直角三角形且,即又因为面,面面,面面,故面,又面,所以面面(2)由(1)知面,又四边形为矩形,则两两垂直以为坐标原点,为轴正方向,为轴正方向,为轴正方向,建立空间直角坐标系则,设,则,设平面的法向量为,则有,令,则,则平面的一个法向量为,同理可得平面的一个法向量为,设平面与平面所成角为,则由题意可得,解得,所以点为中点【点睛】本题主要考查空间几何位置关系的证明,考查空间二面角的应用,意在考查学生对这些知识的理解掌握水平.20、(1)函数的单
19、调递增区间为和,单调递减区间为;(2).【解析】(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【详解】(1),当时,函数在内单调递增;当时,令,解得或,当或时,则单调递增,当时,则单调递减,函数的单调递增区间为和,单调递减区间为(2)()当时,所以在上无零点;()当时,若,即,则是的一个零点;若,即,则不是的零点()当时,所以此时只需考虑函数在上零点的情况,因为,所以当时,在上单调递增。又,所以()当时,在上无零点;()当时,又,所以此时在上恰有一个零点; 当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,所以此时在上恰
20、有一个零点,综上,【点睛】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想21、(1)2;(2);(3)证明见解析【解析】(1)先求出函数的定义域和导数,由已知函数在处取得极值,得到,即可求解的值;(2)由(1)得,定义域为,分,和三种情况讨论,分别求得函数的最小值,即可得到结论;(3)由,得到,把,只需证,构造新函数,利用导数求得函数的单调性与最值,即可求解.【详解】(1)由,定义域为,则,因为函数在处取得极值,所以,即,解得,经检验,满足题意,所以.(2)由(1)得,定义域为,当时,有,在区间上单调递增,最小值为,当时,由得,且,当时,单调递减;
21、当时,单调递增;所以在区间上单调递增,最小值为,当时,则,当时,单调递减;当时,单调递增;所以在处取得最小值,综上可得:当时,在区间上的最小值为1,当时,在区间上的最小值为.(3)由得,当时,则,欲证,只需证,即证,即,设,则,当时,在区间上单调递增,当时,即,故, 即当时,恒有成立.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题22、见解析【解析】(1)因为,成等差数列,所以,由余弦定理可得,因为,所以,即,所以(2)若B为直角,则,由及正弦定理可得,所以,即,上式两边同时平方,可得,所以(*)又,所以,所以,与(*)矛盾,所以不存在满足为直角