浙江省温州东瓯中学2022-2023学年高考冲刺数学模拟试题含解析.doc

上传人:lil****205 文档编号:88307871 上传时间:2023-04-25 格式:DOC 页数:20 大小:1.98MB
返回 下载 相关 举报
浙江省温州东瓯中学2022-2023学年高考冲刺数学模拟试题含解析.doc_第1页
第1页 / 共20页
浙江省温州东瓯中学2022-2023学年高考冲刺数学模拟试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《浙江省温州东瓯中学2022-2023学年高考冲刺数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省温州东瓯中学2022-2023学年高考冲刺数学模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD2设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件3已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点

2、满足(为坐标原点),则双曲线的渐近线方程为()ABCD4已知向量,若,则实数的值为( )ABCD5已知复数为虚数单位) ,则z 的虚部为( )A2BC4D6某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有( )种ABCD7已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()ABCD8已知函数,则( )AB1C-1D09正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )ABCD10设全集,集合,则集合( )ABCD11抛物线的准线与轴的交点为点,过点作直

3、线与抛物线交于、两点,使得是的中点,则直线的斜率为( )ABC1D12设双曲线(,)的一条渐近线与抛物线有且只有一个公共点,且椭圆的焦距为2,则双曲线的标准方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,则双曲线的离心率的取值范围为_.14在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_15已知a,b均为正数,且,的最小值为_.16过直线上一动点向圆引两条切线MA,MB,切点为A,B,若,则四边形MACB的最小面积的概率为_三、解答题:共70分。解答应写出文字说明、证明过

4、程或演算步骤。17(12分)设函数.(1)求的值;(2)若,求函数的单调递减区间.18(12分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为(1)求椭圆的标准方程;(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点求证:直线过定点并求出点的坐标;(3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围19(12分)在平面直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为cos(+)1(1)求直线l的直角坐标方程和曲线C的普通方程;(2)已知点M (2,

5、0),若直线l与曲线C相交于P、Q两点,求的值20(12分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)(文科)求三棱锥的体积;(理科)求二面角的正切值.21(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10

6、名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.22(10分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为

7、,所以该几何体的体积,故选C2、C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.3、B【解析】先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.4、D【解析】由两向量垂直可

8、得,整理后可知,将已知条件代入后即可求出实数的值.【详解】解:,即,将和代入,得出,所以.故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.5、A【解析】对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.6、C【解析】在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.【详解】两组至少都是人,则分组中两组的人数分别为、或、,又因为名女干部不能单独成一

9、组,则不同的派遣方案种数为.故选:C.【点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.7、A【解析】根据x的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可【详解】当时,当时,当时,当时,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直

10、接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.8、A【解析】由函数,求得,进而求得的值,得到答案.【详解】由题意函数,则,所以,故选A.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.【详解】解:建立以为原点,以直线为轴,直线为轴的

11、平面直角坐标系.设,则,由,即,得.所以=,所以当时,的最小值为.故选:C.【点睛】本题考查向量的数量积的坐标表示,属于基础题.10、C【解析】集合, 点睛:本题是道易错题,看清所问问题求并集而不是交集.11、B【解析】设点、,设直线的方程为,由题意得出,将直线的方程与抛物线的方程联立,列出韦达定理,结合可求得的值,由此可得出直线的斜率.【详解】由题意可知点,设点、,设直线的方程为,由于点是的中点,则,将直线的方程与抛物线的方程联立得,整理得,由韦达定理得,得,解得,因此,直线的斜率为.故选:B.【点睛】本题考查直线斜率的求解,考查直线与抛物线的综合问题,涉及韦达定理设而不求法的应用,考查运算

12、求解能力,属于中等题.12、B【解析】设双曲线的渐近线方程为,与抛物线方程联立,利用,求出的值,得到的值,求出关系,进而判断大小,结合椭圆的焦距为2,即可求出结论.【详解】设双曲线的渐近线方程为,代入抛物线方程得,依题意,椭圆的焦距,双曲线的标准方程为.故选:B.【点睛】本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】法一:根据直角三角形的性质和勾股定理得,,又由双曲线的定义得,将离心率表示成关于的式子,再令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,根据直角三角形的性

13、质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【详解】法一:,,,,设,则,令,所以时,在上单调递增, ,.法二:,令,.故答案为:.【点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.14、【解析】先确定球心的位置,结合勾股定理可求球的半径,进而可得球的面积.【详解】取的外心为,设为球心,连接,则平面,取的中点,连接,过做于点,易知四边形为矩形,连接,设,.连接,则,三点共线,易知,所以,.在和中,即,所以,得.所以.【点睛】本题主要考查几何体的外接球

14、问题,外接球的半径的求解一般有两个思路:一是确定球心位置,利用勾股定理求解半径;二是利用熟悉的模型求解半径,比如长方体外接球半径是其对角线的一半.15、【解析】本题首先可以根据将化简为,然后根据基本不等式即可求出最小值.【详解】因为,所以,当且仅当,即、时取等号,故答案为:.【点睛】本题考查根据基本不等式求最值,基本不等式公式为,在使用基本不等式的时候要注意“”成立的情况,考查化归与转化思想,是中档题.16、.【解析】先求圆的半径, 四边形的最小面积,转化为的最小值为,求出切线长的最小值,再求的距离也就是圆心到直线的距离,可解得的取值范围,利用几何概型即可求得概率【详解】由圆的方程得,所以圆心

15、为,半径为,四边形的面积,若四边形的最小面积,所以的最小值为,而,即的最小值,此时最小为圆心到直线的距离,此时,因为,所以,所以的概率为【点睛】本题考查直线与圆的位置关系,及与长度有关的几何概型,考查了学生分析问题的能力,难度一般.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)的递减区间为和【解析】(1)化简函数,代入,计算即可;(2)先利用正弦函数的图象与性质求出函数的单调递减区间,再结合即可求出.【详解】(1),从而.(2)令.解得.即函数的所有减区间为,考虑到,取,可得,故的递减区间为和.【点睛】本题主要考查了三角函数的恒等变形,正弦函数的图象与性质,属

16、于中档题.18、(1);(2)证明详见解析,;(3).【解析】(1)根据题意列出关于的等式求解即可.(2)先根据对称性,直线过的定点一定在轴上,再设直线的方程为,联立直线与椭圆的方程, 进而求得的方程,并代入,化简分析即可.(3)先分析过点的直线斜率不存在时的值,再分析存在时,设直线的方程为,联立直线与椭圆的方程,得出韦达定理再代入求解出关于的解析式,再求解范围即可.【详解】解:设椭圆的标准方程焦距为,由题意得,由,可得则,所以椭圆的标准方程为;证明:根据对称性,直线过的定点一定在轴上,由题意可知直线的斜率存在,设直线的方程为,联立,消去得到,设点,则所以,所以的方程为,令得,将,代入上式并整

17、理,整理得,所以,直线与轴相交于定点当过点的直线的斜率不存在时,直线的方程为,此时,当过点的直线斜率存在时,设直线的方程为,且在椭圆上,联立方程组,消去,整理得,则所以所以,所以,由得,综上可得,的取值范围是【点睛】本题主要考查了椭圆的基本量求解以及定值和范围的问题,需要分析直线的斜率是否存在的情况,再联立直线与椭圆的方程,根据韦达定理以及所求的解析式,结合参数的范围进行求解.属于难题.19、(1)l: ,C方程为 ;(2)【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换(2)利用一元二次方程根和系数关系式的应用求出结果【详解】(1)曲线C的参数方程为(m为参数)

18、,两式相加得到,进一步转换为直线l的极坐标方程为cos(+)1,则 转换为直角坐标方程为(2)将直线的方程转换为参数方程为(t为参数),代入得到(t1和t2为P、Q对应的参数),所以,所以【点睛】本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型20、(1)见解析(2)(文) (理)【解析】(1)证明:取PD中点G,连结GF、AG,GF为PDC的中位线,GFCD且,又AECD且,GFAE且GF=AE,EFGA是平行四边形,则EFAG,又EF不在平面PAD内,AG在平面PAD内,EF面PAD; (2)(文

19、)解:取AD中点O,连结PO,面PAD面ABCD,PAD为正三角形,PO面ABCD,且,又PC为面ABCD斜线,F为PC中点,F到面ABCD距离,故;(理)连OB交CE于M,可得RtEBCRtOAB,MEB=AOB,则MEB+MBE=90,即OMEC连PM,又由(2)知POEC,可得EC平面POM,则PMEC,即PMO是二面角P-EC-D的平面角,在RtEBC中,即二面角P-EC-D的正切值为【方法点晴】本题主要考查线面平行的判定定理、二面角的求法、利用等积变换求三棱锥体积,属于难题.证明线面平行的常用方法:利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,

20、可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法证明的.21、 (1)60%;(2) (i)0.12 (ii) 【解析】(1)利用上线人数除以总人数求解;(2)(i)利用二项分布求解;(ii)甲、乙两市上线人数分别记为X,Y,得,.,利用期望公式列不等式求解【详解】(1)估计本科上线率为.(2)(i)记“恰有8名学生达到本科线”为事件A,由图可知,甲市每个考生本科上线的概率为0.6,则. (ii)甲、乙两市2020届高考本科上线人数分别记为X,Y,

21、依题意,可得,. 因为2020届高考本科上线人数乙市的均值不低于甲市,所以,即, 解得,又,故p的取值范围为.【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.22、(1)个;(1)存在,.【解析】试题分析:(1)设,对其求导,及最小值,从而得到的解析式,进一步求值域即可;(1)分别对和两种情况进行讨论,得到的解析式,进一步构造,通过求导得到最值,得到满足条件的的范围试题解析:(1)设,1分令,得递增;令,得递减,1分,即,3分设,结合与在上图象可知,这两个函数的图象在上有两个交点,即在上零点的个数为15分(或由方程在上有两根可得)(1)假设存在实

22、数,使得对恒成立,则,对恒成立,即,对恒成立 ,6分设,令,得递增;令,得递减,当即时,4故当时,对恒成立,8分当即时,在上递减,故当时,对恒成立10分若对恒成立,则,11分由及得,故存在实数,使得对恒成立,且的取值范围为11分考点:导数应用.【思路点睛】本题考查了函数恒成立问题;利用导数来判断函数的单调性,进一步求最值;属于难题本题考查函数导数与单调性.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁