2022-2023学年上海市玉华中学中考数学五模试卷含解析.doc

上传人:茅**** 文档编号:87795754 上传时间:2023-04-17 格式:DOC 页数:17 大小:774.50KB
返回 下载 相关 举报
2022-2023学年上海市玉华中学中考数学五模试卷含解析.doc_第1页
第1页 / 共17页
2022-2023学年上海市玉华中学中考数学五模试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022-2023学年上海市玉华中学中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年上海市玉华中学中考数学五模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在矩形 ABCD 中,AB=2a,AD=a,矩形边上一动点 P 沿 ABCD 的路径移动设点 P 经过的路径长为 x,PD2=y,则下列能大致反映 y 与 x 的函数关系的图象是( )ABCD2已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B

2、出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )ABCD3对于实数x,我们规定x表示不大于x的最大整数,如4=4,=1,2.5=3.现对82进行如下操作:82 =9 =3 =1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A1B2C3D44下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个A4B3C

3、2D15袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球下列事件是必然事件的是( )A摸出的三个球中至少有一个球是黑球B摸出的三个球中至少有一个球是白球C摸出的三个球中至少有两个球是黑球D摸出的三个球中至少有两个球是白球6如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1对于下列说法:ab0;2a+b=0;3a+c0;a+bm(am+b)(m为实数);当1x3时,y0,其中正确的是()ABCD7下列图形中,是正方体表面展开图的是( )ABCD8已知抛

4、物线yx2+(2a+1)x+a2a,则抛物线的顶点不可能在()A第一象限B第二象限C第三象限D第四象限9正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )A8BCD10如图给定的是纸盒的外表面,下面能由它折叠而成的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11若一元二次方程有两个不相等的实数根,则k的取值范围是 12关于x的一元二次方程x22xm10有两个相等的实数根,则m的值为_13我们知道方程组的解是,现给出另一个方程组,它的解是_14分式方程的解是 15已知一组数据1,2

5、,x,2,3,3,5,7的众数是2,则这组数据的中位数是 16如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD100,AE200,AB40,AC20,BC30,则通过计算可得DE长为_17如图,菱形ABCD和菱形CEFG中,ABC60,点B,C,E在同一条直线上,点D在CG上,BC1,CE3,H是AF的中点,则CH的长为_.三、解答题(共7小题,满分69分)18(10分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其

6、中一项活动教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整)请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19(5分)如图,AB是O的直径,CD切O于点D,且BDOC,连接AC(1)求证:AC是O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和)20(8分)为了解某校

7、九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图和图,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为 ,图中m的值为 ;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标21(10分)解分式方程:22(10分)某校组织了一次初三科技小制作比赛,有ABC,D四个班共提供了100件参赛作品. C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中 . (1)B班参赛作品有

8、多少件?(2)请你将图的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率 .23(12分)如图,AB是O的直径,D为O上一点,过弧BD上一点T作O的切线TC,且TCAD于点C(1)若DAB50,求ATC的度数;(2)若O半径为2,TC,求AD的长24(14分)如图,二次函数yx2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6)求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得CBD的周长最小?若

9、C点存在,求出C点的坐标;若C点不存在,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】解:(1)当0t2a时,AP=x,;(2)当2at3a时,CP=2a+ax=3ax,=;(3)当3at5a时,PD=2a+a+2ax=5ax,=y,=;综上,可得,能大致反映y与x的函数关系的图象是选项D中的图象故选D2、B【解析】根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.【详解】(1)当0x2时,BQ2x当2x4时,如下图 由上可知故选:B.【点睛】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列

10、出函数关系式.3、C【解析】分析:x表示不大于x的最大整数,依据题目中提供的操作进行计算即可详解:121对121只需进行3次操作后变为1.故选C点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.4、C【解析】四边相等的四边形一定是菱形,正确;顺次连接矩形各边中点形成的四边形一定是菱形,错误;对角线相等的平行四边形才是矩形,错误;经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,正确;其中正确的有2个,故选C考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定5、A【解析】根据必然事件的概念:在一定条件下,必然发生的事件

11、叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误故选A6、A【解析】由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=1时,y=ab+c;然后由图象确定当x取何值时,y2【详解】对称轴在y轴右侧,a、b异号,ab2,故正确;对称轴 2a+b=2;故正确;2a+b=2,b=2a,当x=1时,y=ab+c2,a(2a)+c=3a+c2,故错误;根据图示知,当m=1时,有最大值;当m1时,有am2+bm+ca+b+c,所以a+bm(am+b)(m

12、为实数)故正确如图,当1x3时,y不只是大于2故错误故选A【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a2时,抛物线向上开口;当a2时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab2),对称轴在y轴左; 当a与b异号时(即ab2),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c)7、C【解析】利用正方体及其表面展开图的特点解题【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体故选C【点睛】本题考查了正方体的展开图,解题时牢记正方

13、体无盖展开图的各种情形8、D【解析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得【详解】抛物线yx2+(2a+1)x+a2a的顶点的横坐标为:xa,纵坐标为:y2a,抛物线的顶点横坐标和纵坐标的关系式为:y2x+,抛物线的顶点经过一二三象限,不经过第四象限,故选:D【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键9、D【解析】根据正方形的边长,根据勾股定理求出AR,求出ABRDRS,求出DS,根据面积公式求出即可【详解】正方形ABCD的面积为16,正方形BPQR面积为25,正方形ABCD的边长为4,正方形BPQR的边长为5,在RtABR中,AB=4,BR=5

14、,由勾股定理得:AR=3,四边形ABCD是正方形,A=D=BRQ=90,ABR+ARB=90,ARB+DRS=90,ABR=DRS,A=D,ABRDRS,DS=,阴影部分的面积S=S正方形ABCD-SABR-SRDS=44-43-1=,故选:D【点睛】本题考查了正方形的性质,相似三角形的性质和判定,能求出ABR和RDS的面积是解此题的关键10、B【解析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.

15、故选B.二、填空题(共7小题,每小题3分,满分21分)11、:k1【解析】一元二次方程有两个不相等的实数根,=44k0,解得:k1,则k的取值范围是:k1故答案为k112、2.【解析】试题分析:已知方程x22x=0有两个相等的实数根,可得:44(m1)4m80,所以,m2.考点:一元二次方程根的判别式.13、【解析】观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.14、x=1【解析】试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分

16、式方程的解试题解析:去分母得:x=2x1+2,解得:x=1,经检验x=1是分式方程的解考点:解分式方程15、2.1【解析】试题分析:数据1,2,x,2,3,3,1,7的众数是2,x=2,这组数据的中位数是(2+3)2=2.1;故答案为2.1考点:1、众数;2、中位数16、1【解析】先根据相似三角形的判定得出ABCAED,再利用相似三角形的性质解答即可【详解】 又A=A,ABCAED, BC=30,DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.17、【解析】连接AC、CF,GE,根据菱形性质求出AC、CF,再求出ACF=90,然后利用勾股定理列式

17、求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:如图,连接AC、CF、GE,CF和GE相交于O点在菱形ABCD中, ,BC=1,AC=1, 在菱形CEFG中,是它的对角线,=,在,又H是AF的中点.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键三、解答题(共7小题,满分69分)18、(1)详见解析;(2)40%;(3)105;(4)【解析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参

18、加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论【详解】(1)由条形图知,男生共有:10+20+13+9=52人,女生人数为100-52=48人,参加武术的女生为48-15-8-15=10人,参加武术的人数为20+10=30人,30100=30%,参加器乐的人数为9+15=24人,24100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%40%答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%(3)50021%=105(人)答:估计其中参加“书法”项目活动的

19、有105人(4)答:正好抽到参加“器乐”活动项目的女生的概率为【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小19、(1)证明见解析;(2);【解析】(1)连接OD,先根据切线的性质得到CDO=90,再根据平行线的性质得到AOC=OBD,COD=ODB,又因为OB=OD,所以OBD=ODB,即AOC=COD,再根据全等三角形的判定与性质得到CAO=CDO=90,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,RtODC与RtOAC是含3

20、0的直角三角形,从而得到DOB=60,即BOD为等边三角形,再用扇形的面积减去BOD的面积即可.【详解】(1)证明:连接OD,CD与圆O相切,ODCD,CDO=90,BDOC,AOC=OBD,COD=ODB,OB=OD,OBD=ODB,AOC=COD,在AOC和DOC中,AOCEOC(SAS),CAO=CDO=90,则AC与圆O相切;(2)AB=OC=4,OB=OD,RtODC与RtOAC是含30的直角三角形,DOC=COA=60,DOB=60,BOD为等边三角形,图中阴影部分的面积=扇形DOB的面积DOB的面积,=【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30角的直角三

21、角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.20、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标【解析】分析:()根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可; ()根据平均数、众数、中位数的定义求解可得; ()总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得详解:()本次抽测的男生人数为1020%=50,m%=100%=1%,所以m=1 故答案为50、1; ()平均数为=5.16次,众数为5次,中位数为=5次; ()350=2答:估计该校350名九

22、年级男生中有2人体能达标点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据21、无解【解析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零【详解】解:两边同乘以(x+2)(x2)得:x(x+2)(x+2)(x2)=8去括号,得:+2x+4=8 移项、合并同类项得:2x=4 解得:x=2经检验,x=2是方程的增根 方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验22、(1)25件;(2)见解析;(3)B班的获奖率高;(4).【解析】试题分析:(1

23、)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率试题解析:(1)由题意可得:100(135%20%20%)=25(件),答:B班参赛作品有25件;(2)C班提供的参赛作品的获奖率为50%,C班的参赛作品的获奖数量为:10020%50%=10(件),如图所示:;(3)A班的获奖率为:100%=40%,B班的获奖率为:100%=44%,C班的获奖率为:=50%;D班的获奖率为:100%=40%,故C班的获奖率高;(

24、4)如图所示:,故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:=考点:1列表法与树状图法;2扇形统计图;3条形统计图23、(2)65;(2)2【解析】试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CTOT,CT为O的切线;(2)证明四边形OTCE为矩形,求得OE的长,在直角OAE中,利用勾股定理即可求解试题解析:(2)连接OT,OA=OT,OAT=OTA,又AT平分BAD,DAT=OAT,DAT=OTA,OTAC,又CTAC,CTOT,CT为O的切线;(2)过O作OEAD于E,则E为AD中点,又CTAC,OEC

25、T,四边形OTCE为矩形,CT=,OE=,又OA=2,在RtOAE中,AE,AD=2AE=2考点:2切线的判定与性质;2勾股定理;3圆周角定理24、(1)y=x14x+6;(1)D点的坐标为(6,0);(3)存在当点C的坐标为(4,1)时,CBD的周长最小【解析】(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;(3)连接CA,由于BD是定值,使得CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只

26、需用待定系数法求出直线AB的解析式,就可得到点C的坐标【详解】(1)把A(1,0),B(8,6)代入,得解得:二次函数的解析式为;(1)由,得二次函数图象的顶点坐标为(4,1)令y=0,得,解得:x1=1,x1=6,D点的坐标为(6,0);(3)二次函数的对称轴上存在一点C,使得的周长最小连接CA,如图,点C在二次函数的对称轴x=4上,xC=4,CA=CD,的周长=CD+CB+BD=CA+CB+BD,根据“两点之间,线段最短”,可得当点A、C、B三点共线时,CA+CB最小,此时,由于BD是定值,因此的周长最小设直线AB的解析式为y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:直线AB的解析式为y=x1当x=4时,y=41=1,当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁