2022-2023学年云南省曲靖市麒麟区五中高三下学期第六次检测数学试卷含解析.doc

上传人:茅**** 文档编号:87795586 上传时间:2023-04-17 格式:DOC 页数:19 大小:1.99MB
返回 下载 相关 举报
2022-2023学年云南省曲靖市麒麟区五中高三下学期第六次检测数学试卷含解析.doc_第1页
第1页 / 共19页
2022-2023学年云南省曲靖市麒麟区五中高三下学期第六次检测数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年云南省曲靖市麒麟区五中高三下学期第六次检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南省曲靖市麒麟区五中高三下学期第六次检测数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列判断错误的是( )A若随机变量服从正态分布,则B已知直线平面,直线平面,则“”是“”的充分不必要条件C若随机变量服从二项分布: , 则D是的充分不必要条件2已知函数,若不等式对任意的恒成立,则实数k的取值范围是( )ABCD3如图是甲、乙两位同学

2、在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )A甲得分的平均数比乙大B甲得分的极差比乙大C甲得分的方差比乙小D甲得分的中位数和乙相等4如图所示的程序框图输出的是126,则应为( )ABCD5公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米.所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为( )A

3、米B米C米D米6已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为( )ABCD7在三棱锥中,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( )ABCD8已知椭圆的右焦点为F,左顶点为A,点P椭圆上,且,若,则椭圆的离心率为( )ABCD9已知复数z(1+2i)(1+ai)(aR),若zR,则实数a( )ABC2D210为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图

4、所示的六大素养指标雷达图,则下面叙述不正确的是( )A甲的数据分析素养优于乙B乙的数据分析素养优于数学建模素养C甲的六大素养整体水平优于乙D甲的六大素养中数学运算最强11抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )ABCD12在区间上随机取一个数,使直线与圆相交的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中的常数项为_.14抛物线的焦点坐标为_.15已知数列为等差数列,数列为等比数列,满足,其中,则的值为_16若椭圆:的一个焦点坐标为,则的长轴长为_三、解答题:共70分。解答应写出文字说明、证明过程

5、或演算步骤。17(12分)已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.18(12分)如图,在直角中,点在线段上.(1)若,求的长;(2)点是线段上一点,且,求的值.19(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为()求椭圆的离心率;()如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程20(12分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最

6、广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:日期1234567全国累计报告确诊病例数量(万人)1.41.72.02.42.83.13.5(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系? (2)求出关于的线性回归方程(系数精确到0.01).并预

7、测2月10日全国累计报告确诊病例数.参考数据:,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:,.21(12分)已知函数f(x)|x1|x2|.若不等式|ab|ab|a|f(x)(a0,a、bR)恒成立,求实数x的取值范围22(10分)已知三棱柱中,是的中点,.(1)求证:;(2)若侧面为正方形,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求

8、解.【详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;对于选项,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D【点睛】本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运

9、算求解能力,属于基础题.2、A【解析】先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详解】当时,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.3、B【解析】由平均数、方差公式和极差、中位数概念,可得所求结论【详解】对于甲,;对于乙,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中

10、位数为,故正确故选:【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题4、B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件S=2+22+21=121,故中应填n1故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件

11、变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误5、D【解析】根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以 .故选:D【点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.6、A【解析】点的坐标为,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入

12、可得,所以双曲线的方程为故选:【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.7、A【解析】设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题8、C【解析】不妨设在第一象限,故,根据得到,解得答案.【详解】不妨设在第一象限,故,即,即,解得,(舍去).故选:.【点睛】本题考查了椭圆的

13、离心率,意在考查学生的计算能力.9、D【解析】化简z(1+2i)(1+ai)=,再根据zR求解.【详解】因为z(1+2i)(1+ai)=,又因为zR,所以,解得a-2.故选:D【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.10、D【解析】根据所给的雷达图逐个选项分析即可.【详解】对于A,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A正确;对于B,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B正确;对于C,甲的六大素养整体水平平均得分为,乙的六大素养整体水平均得分为,故C正确;对于D,甲的

14、六大素养中数学运算为80分,不是最强的,故D错误;故选:D【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.11、A【解析】首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1_ _,_1_,_ _1剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个故不同的样本点数为8

15、个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题12、C【解析】根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得 所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、160【解析】先求的展开式中通项,令的指数为3即可求解结论.【详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【点睛】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题14、

16、【解析】变换得到,计算焦点得到答案.【详解】抛物线的标准方程为,所以焦点坐标为故答案为:【点睛】本题考查了抛物线的焦点坐标,属于简单题.15、【解析】根据题意,判断出,根据等比数列的性质可得,再令数列中的,根据等差数列的性质,列出等式,求出和的值即可.【详解】解:由,其中,可得,则,令,可得.又令数列中的,根据等差数列的性质,可得,所以.根据得出,.所以.故答案为.【点睛】本题主要考查等差数列、等比数列的性质,属于基础题.16、【解析】由焦点坐标得从而可求出,继而得到椭圆的方程,即可求出长轴长.【详解】解:因为一个焦点坐标为,则,即,解得或 由表示的是椭圆,则,所以,则椭圆方程为 所以.故答案

17、为:.【点睛】本题考查了椭圆的标准方程,考查了椭圆的几何意义.本题的易错点是忽略,从而未对 的两个值进行取舍.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,【解析】由数列为“数列”可得,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,两式相减得,据此可得,当时,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得, 在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以. (2)由题意得,故,两式相减得 所以,

18、当时,又因为所以当时,所以成立,所以当时,数列是常数列, 所以 因为当时,成立,所以,所以在中令,因为,所以可得,所以,由时,且为整数,可得,把分别代入不等式可得,,所以存在数列符合题意,的所有值为.【点睛】本题考查数列的新定义、等比数列的通项公式和数列递推公式的运用;考查运算求解能力、逻辑推理能力和对新定义的理解能力;通过反复利用递推公式,得到数列为常数列是求解本题的关键;属于综合型强、难度大型试题.18、(1)3;(2).【解析】(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程组即可.【详解】(1)在中,已知,由正弦定理,得,解得.(2)因为,所以,解得.

19、在中,由余弦定理得,即,故.【点睛】本题考查正余弦定理在解三角形中的应用,考查学生的计算能力,是一道中档题.19、();()【解析】试题分析:(1)依题意,由点到直线的距离公式可得,又有,联立可求离心率;(2)由(1)设椭圆方程,再设直线方程,与椭圆方程联立,求得,令,可得,即得椭圆方程.试题解析:()过点的直线方程为,则原点到直线的距离,由,得,解得离心率.()由(1)知,椭圆的方程为.依题意,圆心是线段的中点,且.易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得.从而.于是.由,得,解得.故椭圆的方程为.20、(1)可以用线性回归模型拟合与的关系;(2),预测2月10

20、日全国累计报告确诊病例数约有4.5万人.【解析】(1)根据已知数据,利用公式求得,再根据的值越大说明它们的线性相关性越高来判断.(2)由(1)的相关数据,求得,写出回归方程,然后将代入回归方程求解.【详解】(1)由已知数据得,所以,所以.因为与的相关近似为0.99,说明它们的线性相关性相当高,从而可以用线性回归模型拟合与的关系.(2)由(1)得,所以,关于的回归方程为:,2月10日,即代入回归方程得:.所以预测2月10日全国累计报告确诊病例数约有4.5万人.【点睛】本题主要考查线性回归分析和回归方程的求解及应用,还考查了运算求解的能力,属于中档题.21、x【解析】由题知,|x1|x2|恒成立,

21、故|x1|x2|不大于的最小值|ab|ab|abab|2|a|,当且仅当(ab)(ab)0时取等号,的最小值等于2.x的范围即为不等式|x1|x2|2的解,解不等式得x.22、(1)证明见解析(2)【解析】(1)取的中点,连接,证明平面得出,再得出;(2)建立空间坐标系,求出平面的法向量,计算,即可得出答案【详解】(1)证明:取的中点,连接,故,又,平面,平面,分别是,的中点,(2)解:四边形是正方形,又,平面,平面,在平面内作直线的垂线,以为原点,以,为所在直线为坐标轴建立空间直角坐标系,则,0,1,2,0,1,2,1,设平面的法向量为,则,即,令可得:,直线与平面所成角的正弦值为,【点睛】本题主要考查了线面垂直的判定与性质,考查空间向量与空间角的计算,属于中档题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁