《2022-2023学年四川省成都市实验外国语校中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省成都市实验外国语校中考数学考前最后一卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1的倒数是( )ABCD2若点A(a,b),B(,c)都在反比例函数y的图象上,且1c0,则一次函数y(bc)x+ac的大致图象是()ABCD3如图图形中,是中心对称图形的是( )ABCD4下列所给的汽车标志图案中,既是轴对称图形,又是中心对称
2、图形的是()ABCD5下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧ABC全等的是()A甲和乙B乙和丙C甲和丙D只有丙6 “龟兔赛跑”是同学们熟悉的寓言故事如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子)下列叙述正确的是( )A赛跑中,兔子共休息了50分钟B乌龟在这次比赛中的平均速度是0.1米/分钟C兔子比乌龟早到达终点10分钟D乌龟追上兔子用了20分钟7如图,将RtABC绕直角项点C顺时针旋转90,得到A BC,连接AA,若1=20,则B的度数是( ) A70B65C60D558若a是一元二次方程x2x1=0的一个根,则求代数式a3
3、2a+1的值时需用到的数学方法是()A待定系数法 B配方 C降次 D消元9下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形 (4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A1 B2 C3 D410下列四个图形中,是中心对称图形的是( )ABCD11某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )ABCD12四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
4、AB1CD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),O的半径为1,点C为O上一动点,过点B作BP直线AC,垂足为点P,则P点纵坐标的最大值为 cm14若3,a,4,5的众数是4,则这组数据的平均数是_15如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是_16计算:cos245-tan30sin60=_17有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是_18从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据
5、如下:种子粒数1004008001 0002 0005 000发芽种子粒数853186527931 6044 005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为_(精确到0.1)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,点A在MON的边ON上,ABOM于B,AE=OB,DEON于E,AD=AO,DCOM于C求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.20(6分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且
6、俯角为45,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角为30.已知树高EF=6米,求塔CD的高度(结果保留根号).21(6分)新农村社区改造中,有一部分楼盘要对外销售某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送请写出售价y(元/米2)与楼层x(1x23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他
7、一次性付清所有房款,请帮他计算哪种优惠方案更加合算22(8分)已知:如图,AB为O的直径,AB=AC,BC交O于点D,DEAC于E(1)求证:DE为O的切线;(2)G是ED上一点,连接BE交圆于F,连接AF并延长交ED于G若GE=2,AF=3,求EF的长23(8分)如图1,ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN(1)求证:PMN是等腰三角形;(2)将ADE绕点A逆时针旋转,如图2,当点D、E分别在边AC两侧时,求证:PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次
8、点D、E、C在一条直线上时,请直接写出此时BD的长24(10分)已知关于x的分式方程=2和一元二次方程mx23mx+m1=0中,m为常数,方程的根为非负数(1)求m的取值范围;(2)若方程有两个整数根x1、x2,且m为整数,求方程的整数根25(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k0)的图象与反比例函数y=(m0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(2,3),点B(6,n)(1)求该反比例函数和一次函数的解析式;(2)求AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=(m0)的图象上的两点,且x1x2,y1y2,指出点M
9、、N各位于哪个象限26(12分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.(1)求证:ACMABE.(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积. 27(12分)在正方形 ABCD 中,M 是 BC 边上一点,且点 M 不与 B、C 重合,点 P 在射线 AM 上,将线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,连接BP,DQ(1)依题意补全图 1;(2)连接 DP,若点 P,Q,D 恰好在同
10、一条直线上,求证:DP2+DQ2=2AB2;若点 P,Q,C 恰好在同一条直线上,则 BP 与 AB 的数量关系为: 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】由互为倒数的两数之积为1,即可求解【详解】,的倒数是.故选C2、D【解析】将,代入,得,然后分析与的正负,即可得到的大致图象.【详解】将,代入,得,即,即与异号又,故选D【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.3、D【解析】根据中心对称图形的概念和识别【详解】根据中心对称图形的概念和识别,可知D
11、是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形故选D【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形4、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可详解:A是轴对称图形,不是中心对称图形; B是轴对称图形,也是中心对称图形; C是轴对称图形,不是中心对称图形; D是轴对称图形,不是中心对称图形 故选B点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合5、B【解析】分析
12、:根据三角形全等的判定方法得出乙和丙与ABC全等,甲与ABC不全等详解:乙和ABC全等;理由如下:在ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和ABC全等;在ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和ABC全等;不能判定甲与ABC全等;故选B点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角6、D【解析】分析:根据图象得出相关信息,并对各选项一一进行判断即可.详解:由图象
13、可知,在赛跑中,兔子共休息了:50-1040(分钟),故A选项错误;乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.7、B【解析】根据图形旋转的性质得AC=AC,ACA=90,B=ABC,从而得AAC=45,结合1=20,即可求解【详解】将RtABC绕直角项点C顺时针旋转90,得到A BC,AC=AC
14、,ACA=90,B=ABC,AAC=45,1=20,BAC=45-20=25,ABC=90-25=65,B=65故选B【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键8、C【解析】根据一元二次方程的解的定义即可求出答案【详解】由题意可知:a2-a-1=0,a2-a=1,或a2-1=aa3-2a+1=a3-a-a+1=a(a2-1)-(a-1)=a2-a+1=1+1=2故选:C【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义9、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线
15、的性质、垂径定理判断即可详解:等腰三角形的两个底角相等,(1)正确; 对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误; 对角线相等的平行四边形为矩形,(3)错误; 圆的切线垂直于过切点的半径,(4)错误; 平分弦(不是直径)的直径垂直于弦,(5)错误 故选D点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理10、D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本
16、选项正确;故选D考点:中心对称图形11、B【解析】试题解析:列表如下:共有20种等可能的结果,P(一男一女)=故选B12、A【解析】在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】当AC与O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CHx轴于H,PMx轴于M,DNPM于N,AC为切线,OCAC,在AOC中,OA=2,OC=1,OAC=30,AOC=60,在RtAOD中,DAO=30,OD=O
17、A=,在RtBDP中,BDP=ADO=60,DP=BD=(2-)=1-,在RtDPN中,PDN=30,PN=DP=-,而MN=OD=,PM=PN+MN=1-+=,即P点纵坐标的最大值为【点睛】本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值14、4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可试题解析:3,a,4,5的众数是4,a=4,这组数据的平均数是(3+4+4+5)4=4.考点:1.算术平均数;2.众数15、【解析】试题解析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OMAB,且OC=MC=1,在RTAO
18、C中,OA=2,OC=1,cosAOC=,AC=AOC=60,AB=2AC=2,AOB=2AOC=120,则S弓形ABM=S扇形OAB-SAOB=,S阴影=S半圆-2S弓形ABM=22-2()=2故答案为216、0【解析】直接利用特殊角的三角函数值代入进而得出答案【详解】= .故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键17、【解析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取
19、法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏用到的知识点为:概率=所求情况数与总情况数之比18、12【解析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论【详解】观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,该玉米种子发芽的概率为1.2,故答案为1.2【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤
20、19、(1)证明见解析;(2)AB、AD的长分别为2和1【解析】(1)证RtABORtDEA(HL)得AOB=DAE,ADBC证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知RtABORtDEA,AB=DE=2设AD=x,则OA=x,AE=OEOA=9x在RtDEA中,由得:.【详解】(1)证明:ABOM于B,DEON于E,.在RtABO与RtDEA中,RtABORtDEA(HL)AOB=DAEADBC又ABOM,DCOM,ABDC四边形ABCD是平行四边形,四边形ABCD是矩形; (2)由(1)知RtABORtDEA,AB=DE=2 设AD=x,则OA=x,AE=O
21、EOA=9x在RtDEA中,由得:,解得AD=1即AB、AD的长分别为2和1【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.20、(6+2)米【解析】根据题意求出BAD=ADB=45,进而根据等腰直角三角形的性质求得FD,在RtPEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在RtPCG中,继而可求出CG的长度【详解】由题意可知BAD=ADB=45,FD=EF=6米,在RtPEH中,tan=,BF=5,PG=BD=BF+FD=5+6,tan= ,CG=(5+6)=5+2,CD=(6+2)米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的
22、知识求解相关线段的长度21、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算【解析】解:(1)当1x8时,每平方米的售价应为:y=4000(8x)30=30x+3760 (元/平方米)当9x23时,每平方米的售价应为:y=4000+(x8)50=50x+3600(元/平方米)(2)第十六层楼房的每平方米的价格为:5016+3600=4400(元/平方米),按照方案一所交房款为:W1=4400120(18%)a=485760a(元),按照方案二所交房款为
23、:W2=4400120(110%)=475200(元),当W1W2时,即485760a475200,解得:0a10560,当W1W2时,即485760a475200,解得:a10560,当0a10560时,方案二合算;当a10560时,方案一合算【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键22、(1)见解析;(2)EAF的度数为30【解析】(1)连接OD,如图,先证明ODAC,再利用DEAC得到ODDE,然后根据切线的判定定理得到结论;(2)利用圆周角定理得到AFB=90,再证明RtGEFRtGAE,利用相似比得到 于
24、是可求出GF=1,然后在RtAEG中利用正弦定义求出EAF的度数即可【详解】(1)证明:连接OD,如图,OB=OD,OBD=ODB,AB=AC,ABC=C,ODB=C,ODAC,DEAC,ODDE,DE为O的切线;(2)解:AB为直径,AFB=90,EGF=AGF,RtGEFRtGAE,即整理得GF2+3GF4=0,解得GF=1或GF=4(舍去),在RtAEG中,sinEAG EAG=30,即EAF的度数为30【点睛】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常
25、常“遇到切点连圆心得半径”也考查了圆周角定理23、(1)见解析;(2)见解析;.【解析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)先证明ABDACE,得BD=CE,同理根据三角形中位线定理可得结论;如图4,连接AM,计算AN和DE、EM的长,如图3,证明ABDCAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,点N,P是BC,CD的中点,PNBD,PN=BD,点P,M是CD,DE的中点,PMCE,PM=CE,AB=AC,AD=AE,BD=CE,PM=PN,PMN是等腰三角形;(2)如图2,DAE=BAC,B
26、AD=CAE,AB=AC,AD=AE,ABDACE,点M、N、P分别是线段DE、BC、CD的中点,PN=BD,PM=CE,PM=PN,PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,BAC=DAE,BAD=CAE,AB=AC,AD=AE,ABDCAE,BD=CE,如图4,连接AM,M是DE的中点,N是BC的中点,AB=AC,A、M、N共线,且ANBC,由勾股定理得:AN=4,AD=AE=1,AB=AC=6,=,DAE=BAC,ADEAEC,AM=,DE=,EM=,如图3,RtACM中,CM=,BD=CE=CM+EM=【点睛】此题是三角形的综合题,主要考查
27、了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出ABDACE,解(2)的关键是判断出ADEAEC24、(1)且,;(2)当m=1时,方程的整数根为0和3.【解析】(1)先解出分式方程的解,根据分式的意义和方程的根为非负数得出的取值;(2)根据根与系数的关系得到x1+x2=3,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.【详解】解:(1)关于x的分式方程的根为非负数,且.又,且,解得且.又方程为一元二次方程,.综上可得:且,. (2)一元二次方程有两个
28、整数根x1、x2,m为整数, x1+x2=3,为整数,m=1或.又且,m1.当m=1时,原方程可化为.解得:,. 当m=1时,方程的整数根为0和3.【点睛】考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.25、 (1)反比例函数的解析式为y=;一次函数的解析式为y=x+2;(2)8;(3)点M、N在第二象限,或点M、N在第四象限【解析】(1)把A(2,3)代入y=,可得m=23=6,反比例函数的解析式为y=;把点B(6,n)代入,可得n=1,B(6,1)把A(2,3),B(6,1)代入y=kx+b,可得,解得,一次函数的解析式为y=x+2;(2)
29、y=x+2,令y=0,则x=4,C(4,0),即OC=4,AOB的面积=4(3+1)=8;(3)反比例函数y=的图象位于二、四象限,在每个象限内,y随x的增大而增大,x1x2,y1y2,M,N在相同的象限,点M、N在第二象限,或点M、N在第四象限【点睛】本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键26、(1)证明见解析;(2)证明见解析;(3)74.【解析】(1)根据四边形ABCD和四边形AEMN都是正方形得,CAB=MAC=45,BAE=CAM,可证ACMABE;(2)连结AC,由ACMABE得ACM=B=90,易证MCD=B
30、DC=45,得BDCM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【详解】(1)证明:四边形ABCD和四边形AEMN都是正方形,CAB=MAC=45,CAB-CAE=MAC-CAE,BAE=CAM,ACMABE.(2)证明:连结AC因为ACMABE,则ACM=B=90,因为ACB=ECF=45,所以ACM+ACB+ECF=180,所以点M,C,F在同一直线上,所以MCD=BDC=45,所以BD平行MF,又因为MC=BE,FC=CE,所以MF=BC=BD,所以四边形BFM
31、D是平行四边形(3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+ 26=74.【点睛】本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度27、(1)详见解析;(1)详见解析;BP=AB【解析】(1)根据要求画出图形即可;(1)连接BD,如图1,只要证明ADQABP,DPB=90即可解决问题;结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN由ADQABP,ANQACP,推出DQ=PB,AQN=APC=45,由AQP=45,推出NQC=90,由CD=DN,可得DQ=CD=
32、DN=AB;【详解】(1)解:补全图形如图 1:(1)证明:连接 BD,如图 1,线段 AP 绕点 A 顺时针旋转 90得到线段 AQ,AQ=AP,QAP=90,四边形 ABCD 是正方形,AD=AB,DAB=90,1=1ADQABP,DQ=BP,Q=3,在 RtQAP 中,Q+QPA=90,BPD=3+QPA=90,在 RtBPD 中,DP1+BP1=BD1, 又DQ=BP,BD1=1AB1,DP1+DQ1=1AB1解:结论:BP=AB理由:如图 3 中,连接 AC,延长 CD 到 N,使得 DN=CD,连接 AN,QNADQABP,ANQACP,DQ=PB,AQN=APC=45,AQP=45,NQC=90,CD=DN,DQ=CD=DN=AB,PB=AB【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴