《2022-2023学年四川省成都市重点中学中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年四川省成都市重点中学中考考前最后一卷数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1 “辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据675
2、00用科学记数法表示为A675102B67.5102C6.75104D6.751052如果,那么的值为( )A1B2CD3如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:AED=CED;OE=OD;BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个B3个C4个D5个4下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角相等5若分式有意义,则的取值范围是( )A;B;C;D.6如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平
3、行时,其最小旋转角为( )ABCD7已知函数的图象与x轴有交点则的取值范围是( )Ak4Bk4Ck4且k3Dk4且k38如图,以两条直线l1,l2的交点坐标为解的方程组是( )ABCD9如图,两根竹竿AB和AD斜靠在墙CE上,量得ABC=,ADC=,则竹竿AB与AD的长度之比为ABCD10去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%设降价后房价为x,则去年二月份之前房价为()A(1+40%)30%xB(1+40%)(130%)xCD11在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩
4、余两个面中的粗线画入图2中,画法正确的是( )ABCD12甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地已知A,C两地间的距离为110千米,B,C两地间的距离为100千米甲骑自行车的平均速度比乙快2千米/时结果两人同时到达C地求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时由题意列出方程其中正确的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若关于x的方程=0有增根,则m的值是_14如图,正方形ABCD中,E为AB的中点,AFDE于点O,那么等于( )A;B;C;D15如图,已知ABC和ADE均为等边三角形,点OAC的中点,点D在A射线BO
5、上,连接OE,EC,若AB4,则OE的最小值为_16如图,已知,第一象限内的点A在反比例函数y的图象上,第四象限内的点B在反比例函数y的图象上且OAOB,OAB60,则k的值为_17如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90得到线段CE,线段BD绕点B顺时针旋转90得到线段BF,连接BF,则图中阴影部分的面积是_18点A(1,2),B(n,2)都在抛物线y=x24x+m上,则n=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知正比例函数y=2x与反比例函数y=(k0)的图象交于A、B两点,且点A的横坐标为4,(1)求
6、k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=(k0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标20(6分)(1)问题发现如图1,在RtABC中,A=90,=1,点P是边BC上一动点(不与点B重合),PAD=90,APD=B,连接 CD(1)求的值;求ACD的度数(2)拓展探究如图 2,在RtABC中,A=90,=k点P是边BC上一动点(不与点B重合),PAD=90,APD=B,连接CD,请判断ACD与B 的数量关系以及PB与CD之间的数量关系,并说明理由(3)解决问题如图
7、 3,在ABC中,B=45,AB=4,BC=12,P 是边BC上一动点(不与点B重合),PAD=BAC,APD=B,连接CD若 PA=5,请直接写出CD的长21(6分)如图,BD为ABC外接圆O的直径,且BAE=C求证:AE与O相切于点A;若AEBC,BC=2,AC=2,求AD的长22(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分100分;B级:75分89分;C级:60分74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的
8、百分比为 ,C级学生所在的扇形圆心角的度数为 ;(2)该班学生体育测试成绩的中位数落在等级 内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?23(8分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线(1)求该一次函数表达式;(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围24(10分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面
9、是哭脸的不获奖她从中随机翻开一张纸牌,求小芳获奖的概率(2)如果小芳、小明都有翻两张牌的机会小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌他们翻开的两张纸牌中只要出现一张笑脸就获奖他们获奖的机会相等吗?通过树状图分析说明理由25(10分)已知关于x的一元二次方程x2+2(m1)x+m230有两个不相等的实数根(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值26(12分) (1)计算:(ab)2a(a2b); (2)解方程:27(12分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.(1)若A、B移动到如图所
10、示位置,计算的值.(2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.(3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时比大多少?请列式计算.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).
11、【详解】67500一共5位,从而67500=6.75104,故选C.2、D【解析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案【详解】 故选:D【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键3、C【解析】试题分析:在矩形ABCD中,AE平分BAD,BAE=DAE=45,ABE是等腰直角三角形,AE=AB,AD=AB,AE=AD,又ABE=AHD=90ABEAHD(AAS),BE=DH,AB=BE=AH=HD,ADE=AED=(18045)=67.5,CED=1804567.5=67.5,AED=CED,故正确;AHB=(18045)=67.5,OHE=AH
12、B(对顶角相等),OHE=AED,OE=OH,OHD=9067.5=22.5,ODH=67.545=22.5,OHD=ODH,OH=OD,OE=OD=OH,故正确;EBH=9067.5=22.5,EBH=OHD,又BE=DH,AEB=HDF=45BEHHDF(ASA),BH=HF,HE=DF,故正确;由上述、可得CD=BE、DF=EH=CE,CF=CD-DF,BC-CF=(CD+HE)-(CD-HE)=2HE,所以正确;AB=AH,BAE=45,ABH不是等边三角形,ABBH,即ABHF,故错误;综上所述,结论正确的是共4个故选C【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角
13、平分线的性质;4、等腰三角形的判定与性质4、D【解析】解:A、如果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D5、B【解析】分式的分母不为零,即x-21【详解】分式有意义,x-21,.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零6、B【解析】如图所示,过O点作a的平行线d,根据平行线的性质得到23,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解
14、】如图所示,过O点作a的平行线d,ad,由两直线平行同位角相等得到2350,木条c绕O点与直线d重合时,与直线a平行,旋转角1290.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.7、B【解析】试题分析:若此函数与x轴有交点,则,0,即4-4(k-3)0,解得:k4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.8、C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式然后联立两函数的解析式可得出所求的方程组【详解】直线l1经过
15、(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:故选C【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成的方程组的解9、B【解析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在RtABC中,AB=,在RtACD中,AD=,AB:AD=:=,故选B【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题10、D【解析】根据题
16、意可以用相应的代数式表示出去年二月份之前房价,本题得以解决【详解】由题意可得,去年二月份之前房价为:x(130%)(1+40%)=,故选:D【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式11、A【解析】解:可把A、B、C、D选项折叠,能够复原(1)图的只有A故选A12、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A二、填空题:(本大题共6个小题,每小题4分,共24分)13、
17、2【解析】去分母得,m-1-x=0.方程有增根,x=1, m-1-1=0, m=2.14、D【解析】利用DAO与DEA相似,对应边成比例即可求解【详解】DOA=90,DAE=90,ADE是公共角,DAO=DEADAODEA即AE=AD故选D15、1【解析】根据等边三角形的性质可得OCAC,ABD30,根据“SAS”可证ABDACE,可得ACE30ABD,当OEEC时,OE的长度最小,根据直角三角形的性质可求OE的最小值【详解】解:ABC的等边三角形,点O是AC的中点,OCAC,ABD30ABC和ADE均为等边三角形,ABAC,ADAE,BACDAE60,BADCAE,且ABAC,ADAE,AB
18、DACE(SAS)ACE30ABD当OEEC时,OE的长度最小,OEC90,ACE30OE最小值OCAB1,故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键16、-6【解析】如图,作ACx轴,BDx轴,OAOB,AOB=90,OAC+AOC=90,AOC+BOD=90,OAC=BOD,ACOODB,OAB=60,设A(x,),BD=OC=x,OD=AC=,B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.17、6【解析】过F作FMBE于M,则FME=FMB=90,四边形ABCD是正方形,AB=2,DCB=90,DC=BC
19、=AB=2,DCB=45,由勾股定理得:BD=2,将线段CD绕点C顺时针旋转90得到线段CE,线段BD绕点B顺时针旋转90得到线段BF,DCE=90,BF=BD=2,FBE=90-45=45,BM=FM=2,ME=2,阴影部分的面积=22+42+-=6-.故答案为:6-点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键18、1【解析】根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值【详解】:点A(1,2),B(n,2)都在抛物线y=x2-4x+m上, ,解得 或 ,点B为(1,2)或(1,2),点A(
20、1,2),点B只能为(1,2),故n的值为1,故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)32;(2)x4或0x4;(3)点P的坐标是P(7+,14+2);或P(7+,14+2)【解析】分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比
21、例函数的值(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么POA的面积就应该是四边形面积的四分之一即1可根据双曲线的解析式设出P点的坐标,然后表示出POA的面积,由于POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标详解:(1)点A在正比例函数y=2x上,把x=4代入正比例函数y=2x,解得y=8,点A(4,8),把点A(4,8)代入反比例函数y=,得k=32,(2)点A与B关于原点对称,B点坐标为(4,8),由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x8或0x8;(3)反比例函数图象是关于原点O
22、的中心对称图形,OP=OQ,OA=OB,四边形APBQ是平行四边形,SPOA=S平行四边形APBQ=224=1,设点P的横坐标为m(m0且m4),得P(m,),过点P、A分别做x轴的垂线,垂足为E、F,点P、A在双曲线上,SPOE=SAOF=16,若0m4,如图,SPOE+S梯形PEFA=SPOA+SAOF,S梯形PEFA=SPOA=1(8+)(4m)=1m1=7+3,m2=73(舍去),P(7+3,16+);若m4,如图,SAOF+S梯形AFEP=SAOP+SPOE,S梯形PEFA=SPOA=1(8+)(m4)=1,解得m1=7+3,m2=73(舍去),P(7+3,16+)点P的坐标是P(7
23、+3,16+);或P(7+3,16+)点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义利用数形结合的思想,求得三角形的面积20、(1)1,45;(2)ACD=B, =k;(3).【解析】(1)根据已知条件推出ABPACD,根据全等三角形的性质得到PB=CD,ACD=B=45,于是得到 根据已知条件得到ABCAPD,由相似三角形的性质得到,得到 ABPCAD,根据相似三角形的性质得到结论;过A作AHBC 于 H,得到ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性
24、质得到 ,推出ABPCAD,根据相似三角形的性质即可得到结论【详解】(1)A=90,AB=AC,B=45,PAD=90,APD=B=45,AP=AD,BAP=CAD,在ABP 与ACD 中,AB=AC, BAP=CAD,AP=AD,ABPACD,PB=CD,ACD=B=45,=1,(2)BAC=PAD=90,B=APD,ABCAPD,BAP+PAC=PAC+CAD=90,BAP=CAD,ABPCAD,ACD=B,(3)过 A 作 AHBC 于 H,B=45,ABH 是等腰直角三角形, AH=BH=4,BC=12,CH=8,PH=3,PB=1,BAC=PAD=,B=APD,ABCAPD,,BAP
25、+PAC=PAC+CAD,BAP=CAD,ABPCAD,即 过 A 作 AHBC 于 H,B=45,ABH 是等腰直角三角形, AH=BH=4,BC=12,CH=8,PH=3,PB=7,BAC=PAD=,B=APD,ABCAPD,BAP+PAC=PAC+CAD,BAP=CAD,ABPCAD,即 【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键21、(1)证明见解析;(2)AD=2【解析】(1)如图,连接OA,根据同圆的半径相等可得:D=DAO,由同弧所对的圆周角相等及已知得:BAE=DAO,再由直径所对
26、的圆周角是直角得:BAD=90,可得结论;(2)先证明OABC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可【详解】(1)如图,连接OA,交BC于F,则OA=OB,D=DAO,D=C,C=DAO,BAE=C,BAE=DAO,BD是O的直径,BAD=90,即DAO+BAO=90,BAE+BAO=90,即OAE=90,AEOA,AE与O相切于点A;(2)AEBC,AEOA,OABC,FB=BC,AB=AC,BC=2,AC=2,BF=,AB=2,在RtABF中,AF=1,在RtOFB中,OB2=BF2+(OBAF)2,OB=4, BD=8,在RtABD中,AD=【点睛】本题考
27、查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”22、(1)4%;(2)72;(3)380人【解析】(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数总人数360,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)1900,得这次考试中获得A级和B级的九年级学生共有的人数;(4)根据各等级人数多少,设计合格的等级,使大多数人能合格【详解】解:(1)九年级(1)班学生人数为1326%=
28、50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为1050360=72,故答案为72;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+2550)1900=1444人;(4)建议:把到达A级和B级的学生定为合格,(答案不唯一)23、(1);(2)【解析】(1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;(2)根据直线上的点Q(x,y)在直线的下方可得2x13x+2,解不等式即得结果.【详解】解:
29、(1)一次函数平行于直线,可设该一次函数的解析式为:,直线过点M(4,7),8+b=7,解得b=1,一次函数的解析式为:y=2x1;(2)点Q(x,y)是该一次函数图象上的点,y=2x1,又点Q在直线的下方,如图,2x13.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.24、(1);(2)他们获奖机会不相等,理由见解析.【解析】(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得
30、他们获奖的概率【详解】(1)有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,获奖的概率是;故答案为;(2)他们获奖机会不相等,理由如下:小芳:笑1笑2哭1哭2笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,P(小芳获奖)=;小明:笑1笑2哭1哭2笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭2,哭
31、1哭2笑1,哭2笑2,哭2哭1,哭2共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,P(小明获奖)=,P(小芳获奖)P(小明获奖),他们获奖的机会不相等【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比25、(1)m2;(2)m=1【解析】(1)利用方程有两个不相等的实数根,得=2(m-1)2-4(m2-3)=-8m+23,然后解不等式即可;(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值【详解】(1)=2(m1)24(m23)=8m+2方程有两个不相等的实数根,3即8m+
32、23 解得 m2;(2)m2,且 m 为非负整数,m=3 或 m=1,当 m=3 时,原方程为 x2-2x-3=3,解得 x1=3,x2=1(不符合题意舍去), 当 m=1 时,原方程为 x22=3,解得 x1=,x2= , 综上所述,m=1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a3)的根与=b2-4ac有如下关系:当3时,方程有两个不相等的实数根;当=3时,方程有两个相等的实数根;当3时,方程无实数根26、 (1) b2 (2)1【解析】分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化
33、为整式方程,从而得出方程的解,最后需要进行验根详解:(1) 解:原式a22abb2a22ab b2 ;(2) 解:, 解得:x1, 经检验 x1为原方程的根, 所以原方程的解为x1点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型理解计算法则是解题的关键分式方程最后必须要进行验根27、(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1【解析】(1)根据数轴即可得到a,b数值,即可得出结果.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2,即可求解.(1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.【详解】(1)由图可知:a=10,b=2,a+b=2故a+b的值为2 (2)由B点不动,点A向左移动1个单位长,可得a=3,b=2b|a|=b+a=23=3故a的值为3,b|a|的值为3 (1)点A不动,点B向右移动15.1个单位长a=10,b=17.1ba=17.1(10)=27.1故b比a大27.1【点睛】本题主要考查了数轴,关键在于数形结合思想.