2022-2023学年山东省日照实验高级中学高三第三次测评数学试卷含解析.doc

上传人:茅**** 文档编号:87795244 上传时间:2023-04-17 格式:DOC 页数:21 大小:1.96MB
返回 下载 相关 举报
2022-2023学年山东省日照实验高级中学高三第三次测评数学试卷含解析.doc_第1页
第1页 / 共21页
2022-2023学年山东省日照实验高级中学高三第三次测评数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022-2023学年山东省日照实验高级中学高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省日照实验高级中学高三第三次测评数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1设为虚数单位,则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限2党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )ABCD3设递增的等比数列的前n项和为,已知,则( )A9B27C81D4已知函数的部分图象如图所示,则( )ABCD5已知,复数,且为实数,则( )ABC3D-36设,则关于的

3、方程所表示的曲线是( )A长轴在轴上的椭圆B长轴在轴上的椭圆C实轴在轴上的双曲线D实轴在轴上的双曲线7圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是( )ABCD8已知幂函数的图象过点,且,则,的大小关系为( )ABCD9若的内角满足,则的值为( )ABCD10易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为ABCD11九章算术勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其

4、中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )ABCD12年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是( )A月下旬新增确诊人数呈波动下降趋势B随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数C月日至月

5、日新增确诊人数波动最大D我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值二、填空题:本题共4小题,每小题5分,共20分。13如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_14已知函数与的图象上存在关于轴对称的点,则的取值范围为_15已知向量,则_.16已知(2x-1)7=ao+a1x+ a2x2+a7x7,则a2=_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:18(12分)在锐角三角形中,角的对边分别为已知成等

6、差数列,成等比数列(1)求的值;(2)若的面积为求的值19(12分)已知,.(1)求的值;(2)求的值.20(12分)已知的内角,的对边分别为,且.(1)求;(2)若的面积为,求的周长.21(12分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,且平面平面,点在线段上移动(不与重合),是的中点.(1)当四面体的外接球的表面积为时,证明:.平面(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.22(10分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是

7、否为定值,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.【详解】,对应的点的坐标为,位于第一象限.故选:A.【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.2、D【解析】 根据四个列联表中的等高条形图可知, 图中D中共享与不共享的企业经济活跃度的差异最大, 它最能体现共享经济对该部门的发展有显著效果,故选D3、A【解析】根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且

8、数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.4、A【解析】先利用最高点纵坐标求出A,再根据求出周期,再将代入求出的值.最后将代入解析式即可.【详解】由图象可知A1,所以T,.f(x)sin(2x+),将代入得)1,结合0,.sin.故选:A.【点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.5、B【解析】把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值【详解】因为为实数,所以,解得.【点睛】本题考查复数的概念,考查运算求解能力.6、C【解析】

9、根据条件,方程即,结合双曲线的标准方程的特征判断曲线的类型【详解】解:k1,1+k0,k2-10,方程,即,表示实轴在y轴上的双曲线,故选C【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键7、C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题8、A【解析】根据题意求得参

10、数,根据对数的运算性质,以及对数函数的单调性即可判断.【详解】依题意,得,故,故,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.9、A【解析】由,得到,得出,再结合三角函数的基本关系式,即可求解.【详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.10、A【解析】阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一

11、数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.11、C【解析】由题意知:,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.12、D【解析】根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出

12、结论.【详解】对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确;对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确;对于C选项,由图象可知,月日至月日新增确诊人数波动最大,C选项正确;对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误.故选:D.【点睛】本题考查统计图表的应用,考查数据处理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】画图直观图可得该几何体为棱锥,再计算高求解体积即可.【详解】解:如图,是一

13、个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:故答案为:【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意14、【解析】两函数图象上存在关于轴对称的点的等价命题是方程在区间上有解,化简方程在区间上有解,构造函数,求导,求出单调区间,利用函数性质得解.【详解】解:根据题意,若函数与的图象上存在关于轴对称的点,则方程在区间上有解,即方程在区间上有解,设函数,其导数,又由,可得:当时, 为减函数,当时, 为增函

14、数,故函数有最小值,又由;比较可得: ,故函数有最大值,故函数在区间上的值域为;若方程在区间上有解,必有,则有,即的取值范围是;故答案为:;【点睛】本题利用导数研究函数在某区间上最值求参数的问题, 函数零点问题的拓展. 由于函数的零点就是方程的根,在研究方程的有关问题时,可以将方程问题转化为函数问题解决. 此类问题的切入点是借助函数的零点,结合函数的图象,采用数形结合思想加以解决.15、【解析】求出,然后由模的平方转化为向量的平方,利用数量积的运算计算【详解】由题意得,.,.,.故答案为:【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础本题关键是用数量积的定义把模的运算转化为数量

15、积的运算16、【解析】根据二项展开式的通项公式即可得结果.【详解】解:(2x-1)7的展开式通式为:当时,则.故答案为:【点睛】本题考查求二项展开式指定项的系数,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)递减区间为(-1,0),递增区间为(2)见解析【解析】(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,

16、原不等式得证.【详解】(1)函数可求得,则解得所以,定义域为,在单调递增,而,当时,单调递减,当时,单调递增,此时是函数的极小值点,的递减区间为,递增区间为(2)证明:当时,因此要证当时,只需证明,即令,则,在是单调递增,而,存在唯一的,使得,当,单调递减,当,单调递增,因此当时,函数取得最小值,故,从而,即,结论成立.【点睛】本题考查了由函数极值求参数,并根据导数判断函数的单调区间,利用导数证明不等式恒成立,构造函数法的综合应用,属于难题.18、(1);(2).【解析】(1)根据成等差数列与三角形内角和可知,再利用两角和的正切公式,代入化简可得,同理根据三角形内角和与余弦的两角和公式与等比数

17、列的性质可求得,联立即可求解求的值.(2)由(1)可知,再根据同角三角函数的关系与正弦定理可求得,再结合的面积为利用面积公式求解即可.【详解】解:成等差数列,可得 而,即,展开化简得,因为,故又成等比数列,可得,即,可得联立解得(负的舍去),可得锐角;由可得,由为锐角,解得,因为为锐角,故可得,由正弦定理可得,又的面积为可得,解得【点睛】本题主要考查了等差等比中项的运用以及正切的和差角公式以及同角三角函数关系等.同时也考查了正弦定理与面积公式在解三角形中的运用,属于中档题.19、(1)(2)【解析】(1)先利用同角的三角函数关系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利

18、用余弦的二倍角公式求得,再由正切的和角公式求解即可.【详解】解:(1)因为,所以又,故,所以,所以(2)由(1)得,所以,所以,因为且,即,解得,因为,所以,所以,所以,所以【点睛】本题考查已知三角函数值求值,考查三角函数的化简,考查和角公式,二倍角公式,同角的三角函数关系的应用,考查运算能力.20、(1);(2).【解析】(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.故三角形的周长为.【点睛】本题考

19、查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.21、(1)证明见解析(2)【解析】(1)由题意,先求得为的中点,再证明平面平面,进而可得结论;(2)由题意,当点位于点时,四面体的体积最大,再建立空间直角坐标系,利用空间向量运算即可.【详解】(1)证明:当四面体的外接球的表面积为时.则其外接球的半径为.因为时边长为2的菱形,是矩形.,且平面平面.则,.则为四面体外接球的直径.所以,即.由题意,所以.因为,所以为的中点.记的中点为,连接,.则,所以平面平面.因为平面,所以平面.(2)由题意,平面,则三棱锥的高不变.当四面体的体积最大时,的面积最大.所以当

20、点位于点时,四面体的体积最大.以点为坐标原点,建立如图所示的空间直角坐标系.则,.所以,.设平面的法向量为.则令,得.设平面的一个法向量为.则令,得.设平面与平面所成锐二面角是,则.所以当四面体的体积最大时,平面与平面所成锐二面角的余弦值为.【点睛】本题考查平面与平面的平行、线面平行,考查平面与平面所成锐二面角的余弦值,正确运用平面与平面的平行、线面平行的判定,利用好空间向量是关键,属于基础题22、(1);(2),理由见解析.【解析】(1)求出椭圆的上、下焦点坐标,利用椭圆的定义求得的值,进而可求得的值,由此可得出椭圆的方程;(2)设点的坐标为,求出直线的方程,求出点的坐标,由此计算出直线和的斜率,可计算出的值,进而可求得的值,即可得出结论.【详解】(1)由题意可知,椭圆的上焦点为、,由椭圆的定义可得,可得,因此,所求椭圆的方程为;(2)设点的坐标为,则,得,直线的斜率为,所以,直线的方程为,联立,解得,即点,直线的斜率为,直线的斜率为,所以,因此,.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中定值问题的求解,考查计算能力,属于中等题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁