2022-2023学年吉林省永吉县实验高级中学高三第三次模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:87795858 上传时间:2023-04-17 格式:DOC 页数:19 大小:2.09MB
返回 下载 相关 举报
2022-2023学年吉林省永吉县实验高级中学高三第三次模拟考试数学试卷含解析.doc_第1页
第1页 / 共19页
2022-2023学年吉林省永吉县实验高级中学高三第三次模拟考试数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022-2023学年吉林省永吉县实验高级中学高三第三次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林省永吉县实验高级中学高三第三次模拟考试数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:,.其中满足条件的所有直线的编号有( )ABCD2若,则实数的大小关系为( )ABCD3若的展开式中的系数

2、为-45,则实数的值为()AB2CD4已知函数,存在实数,使得,则的最大值为( )ABCD5算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为( )ABCD6已知向量,则是的( )A充分不必要条件B必要不充分条件C既不充分也不必要条件D充要条件7如图,在平行四边形中,对角线与交于点,且,则( )ABCD8已知是定义在上的奇函数,当

3、时,则( )AB2C3D9已知,则的大小关系为( )ABCD10定义在上的函数与其导函数的图象如图所示,设为坐标原点,、四点的横坐标依次为、,则函数的单调递减区间是( )ABCD11已知复数z满足(其中i为虚数单位),则复数z的虚部是( )AB1CDi12已知复数和复数,则为ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为_14点在双曲线的右支上,其左、右焦点分别为、,直线与以坐标原点为圆心、为半径的圆相切于点,线段的垂直平分线恰好过点,则该双曲线的渐近线的斜率为_15已知复数满足(为虚数单位),则复数的实部为_.1

4、6若函数的图像与直线的三个相邻交点的横坐标分别是,则实数的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.18(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,ABC120,ABAEED2EF,EFAB,点G为CD中点,平面EAD平面ABCD.(1)证明:BDEG;(2)若三棱锥,求菱形ABCD的边长.19(12分)如图,在三棱柱中,已知四边形为矩形,的角平分线交于.(1)求证:平面平面;(2)求二面角的余弦值.20(12分)随着电子阅读的普及,传统纸质媒体遭受到了强烈

5、的冲击某杂志社近9年来的纸质广告收入如下表所示: 根据这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.243;根据后5年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.984.(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?附:相关性检验的临界值表:(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,

6、现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率21(12分)已知动圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;(2)设是轨迹上横坐标为2的点,的平行线交轨迹于,两点,交轨迹在处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.22(10分)已知ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为

7、定值?若为定值,求出该定值;如果不是,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.【详解】解:由已知可得:圆:的圆心为(0,0),半径为2,则圆心到直线的距离为:,而,与的面积相等,或,即到直线的距离或时满足条件,根据点到直线距离可知,满足条件.故选:D.【点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.2、A【解析】将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的

8、大小关系,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.3、D【解析】将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】所以展开式中的系数为,解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.4、A【解析】画出分段函数图像,可

9、得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,在,故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.5、C【解析】将圆锥的体积用两种方式表达,即,解出即可.【详解】设圆锥底面圆的半径为r,则,又,故,所以,.故选:C.【点睛】本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.6、A【解析】向量,则,即,或者-1,判断出即可【详解】解:向量,则,即,或者-1,所以是或者的充分不必要条件,故选:A【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的

10、坐标表示,属于基础题.7、C【解析】画出图形,以为基底将向量进行分解后可得结果【详解】画出图形,如下图选取为基底,则,故选C【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算8、A【解析】由奇函数定义求出和【详解】因为是定义在上的奇函数,.又当时,.故选:A【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键9、A【解析】根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【详解】因

11、为,所以.因为,所以,因为,为增函数,所以所以,故选:A.【点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.10、B【解析】先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.【详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交点,合乎题意.对函数求导得,由得,由图象可知,满足不等式的的取值范围是,因此,函数的单调递减区间为.故选:B.【点

12、睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.11、A【解析】由虚数单位i的运算性质可得,则答案可求.【详解】解:,则化为,z的虚部为.故选:A.【点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.12、C【解析】利用复数的三角形式的乘法运算法则即可得出【详解】z1z2(cos23+isin23)(cos37+isin37)cos60+isin60故答案为C【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的

13、模长的计算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.【详解】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,.故答案为:.【点睛】本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.14、【解析】如图,是切点,是的中点,因为,所以,又,所以,又,根据双曲线的定义,有,即,两边平方并化简得,所以,因此.15、【解析】利用复数的概念与复数的除法运算计算即可得到答案.【详解】,所以复数的实部为2.故答

14、案为:2【点睛】本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.16、4【解析】由题可分析函数与的三个相邻交点中不相邻的两个交点距离为,即,进而求解即可【详解】由题意得函数的最小正周期,解得故答案为:4【点睛】本题考查正弦型函数周期的应用,考查求正弦型函数中的三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);.;(2)【解析】(1)根据题意,知,且,令和即可求出,以及运用递推关系求出的通项公式;(2)通过定义法证明出是首项为8,公比为4的等比数列,利用等比数列的前项和公式,即可求得的前项和.【详解】解:(1)由题可知,且,当时,则,当时,由已知可得,且,

15、的通项公式:.(2)设,则,所以,得是首项为8,公比为4的等比数列,所以数列的前项和为:,即,所以数列的前项和:.【点睛】本题考查通过递推关系求数列的通项公式,以及等比数列的前项和公式,考查计算能力.18、(1)详见解析;(2).【解析】(1)取中点,连,可得,结合平面EAD平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB2EF,求出体积,建立的方程,即可求出结论.【详解】(1)取中点,连,底面ABCD为菱形,平面EAD平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,为中点,平面,平面平面,;(2)设菱形

16、ABCD的边长为,则,所以菱形ABCD的边长为.【点睛】本题考查线线垂直的证明和椎体的体积,注意空间中垂直关系之间的相互转化,体积问题要熟练应用等体积方法,属于中档题.19、(1)见解析;(2)【解析】(1)过点作交于,连接,设,连接,由角平分线的性质,正方形的性质,三角形的全等,证得,由线面垂直的判断定理证得平面,再由面面垂直的判断得证.(2)平面几何知识和线面的关系可证得平面,建立空间直角坐标系,求得两个平面的法向量,根据二面角的向量计算公式可求得其值.【详解】(1)如图,过点作交于,连接,设,连接,又为的角平分线,四边形为正方形,又,又为的中点,又平面,平面,又平面,平面平面,(2)在中

17、,在中,又,又,平面,平面,故建立如图空间直角坐标系,则,设平面的一个法向量为,则,令,得,设平面的一个法向量为,则,令,得,由图示可知二面角是锐角,故二面角的余弦值为.【点睛】本题考查空间的面面垂直关系的证明,二面角的计算,在证明垂直关系时,注意运用平面几何中的等腰三角形的“三线合一”,勾股定理、菱形的对角线互相垂直,属于基础题.20、(1)选取方案二更合适;(2)【解析】(1) 可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据,而后5年的数据得到的相关系数的绝对值,所以有的把握认为与具有线性相关关系,从而可得结论;(2)求得购买电子书的概率为,只

18、购买纸质书的概率为,购买电子书人数多于只购买纸质书人数有两种情况:3人购买电子书,2人购买电子书一人只购买纸质书,由此能求出购买电子书人数多于只购买纸质版本人数的概率.【详解】(1)选取方案二更合适,理由如下:题中介绍了,随着电子阅读的普及,传统纸媒受到了强烈的冲击,从表格中的数据中可以看出从2014年开始,广告收入呈现逐年下降的趋势,可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据. 相关系数越接近1,线性相关性越强,因为根据9年的数据得到的相关系数的绝对值,我们没有理由认为与具有线性相关关系;而后5年的数据得到的相关系数的绝对值,所以有的把握认为

19、与具有线性相关关系. (2) 因为在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,所以从该网站购买该书籍的大量读者中任取一位,购买电子书的概率为,只购买纸质书的概率为, 购买电子书人数多于只购买纸质书人数有两种情况:3人购买电子书,2人购买电子书一人只购买纸质书.概率为:.【点睛】本题主要考查最优方案的选择,考查了相关关系的定义以及互斥事件的概率与独立事件概率公式的应用,考查阅读能力与运算求解能力,属于中档题. 与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有

20、吃透题意,才能将实际问题转化为数学模型进行解答.21、(1);(2)存在,.【解析】(1)根据抛物线的定义,容易知其轨迹为抛物线;结合已知点的坐标,即可求得方程;(2)由抛物线方程求得点的坐标,设出直线的方程,利用导数求得点的坐标,联立直线的方程和抛物线方程,结合韦达定理,求得,进而求得与之间的大小关系,即可求得参数.【详解】(1)由题意得,点与点的距离始终等于点到直线的距离,由抛物线的定义知圆心的轨迹是以点为焦点,直线为准线的抛物线,则,.圆心的轨迹方程为.(2)因为是轨迹上横坐标为2的点,由(1)不妨取,所以直线的斜率为1.因为,所以设直线的方程为,.由,得,则在点处的切线斜率为2,所以在

21、点处的切线方程为.由得所以,所以.由消去得,由,得且.设,则,.因为点,在直线上,所以,所以,所以.故存在,使得.【点睛】本题考查抛物线轨迹方程的求解,以及抛物线中定值问题的求解,涉及导数的几何意义,属综合性中档题.22、(1).(2)四边形OMDN的面积是定值,其定值为.【解析】(1)根据三角形内切圆的性质证得,由此判断出点的轨迹为椭圆,并由此求得曲线的方程.(2)将直线的斜率分成不存在或存在两种情况,求出平行四边形的面积,两种情况下四边形的面积都为,由此证得四边形的面积为定值.【详解】(1)因为圆E为ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|

22、+|AR|+|BR|=2|CP|+|AB|=4|AB|所以点C的轨迹为以点A和点B为焦点的椭圆(点不在轴上),所以c,a=2,b,所以曲线G的方程为,(2)因为,故四边形为平行四边形.当直线l的斜率不存在时,则四边形为为菱形,故直线MN的方程为x=1或x=1,此时可求得四边形OMDN的面积为.当直线l的斜率存在时,设直线l方程是y=kx+m,代入到,得(1+2k2)x2+4kmx+2m24=0,x1+x2,x1x2,=8(4k2+2m2)0,y1+y2=k(x1+x2)+2m,|MN|点O到直线MN的距离d,由,得xD,yD,点D在曲线C上,所以将D点坐标代入椭圆方程得1+2k2=2m2,由题意四边形OMDN为平行四边形,OMDN的面积为S,由1+2k2=2m2得S,故四边形OMDN的面积是定值,其定值为.【点睛】本小题主要考查用定义法求轨迹方程,考查椭圆中四边形面积的计算,考查椭圆中的定值问题,考查运算求解能力,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁