2022-2023学年吉林省吉林毓文中学高三第六次模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:87795028 上传时间:2023-04-17 格式:DOC 页数:20 大小:2.48MB
返回 下载 相关 举报
2022-2023学年吉林省吉林毓文中学高三第六次模拟考试数学试卷含解析.doc_第1页
第1页 / 共20页
2022-2023学年吉林省吉林毓文中学高三第六次模拟考试数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022-2023学年吉林省吉林毓文中学高三第六次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林省吉林毓文中学高三第六次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1函数的部分图象大致是( )ABCD2某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D903设集合,则( )ABCD4设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1cm,则其体重约增加0.85kgD若该大学某女生身高为170cm,则可断定

3、其体重比为58.79kg5下列不等式成立的是( )ABCD6一艘海轮从A处出发,以每小时24海里的速度沿南偏东40的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70,在B处观察灯塔,其方向是北偏东65,那么B,C两点间的距离是( )A6 海里B6海里C8海里D8海里7复数满足 (为虚数单位),则的值是()ABCD8若,则( )ABCD9由实数组成的等比数列an的前n项和为Sn,则“a10”是“S9S8”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10在边长为2的菱形中,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外

4、接球的表面积为( )ABCD11已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( )ABCD12已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为_14已知正实数满足,则的最小值为 15若复数满足,其中是虚数单位,是的共轭复数,则_.16中,角的对边分别为,且成等差数列,若,则的面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的离

5、心率为,且过点.(1)求椭圆C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.18(12分)已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点(1)证明:点始终在直线上且;(2)求四边形的面积的最小值19(12分) “绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生

6、人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为 “选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望20(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,).记数表中位于第i行第j列的元素为,其中(,).如:,.(1)设,请计算,;(2)设,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,对于整数t,t不属

7、于数表M,求t的最大值.21(12分)设函数,是函数的导数.(1)若,证明在区间上没有零点;(2)在上恒成立,求的取值范围.22(10分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.求数列的通项公式;求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】判断函数的性质,和特殊值的正负,以及值域,逐一排除选项.【详解】,函数是奇函数,排除,时,时,排除,当时, 时,排除,符合条件,故选C.【点睛】本题考查了根据函数解析式判断函数图象,属于基础题型,一般根据选项判断

8、函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.2、A【解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.3、C【解析】解对数不等式求得集合,由此求得两个集合的交集.【详解】由,解得,故.依题意,所以.故选:C【点睛】本小题主要考查对数不等式的解法,考查集合交集的概念和运算,属于基础题.4、D【解析】根据y与x的线性回归方程为 y=0.85x

9、85.71,则=0.850,y 与 x 具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;该大学某女生身高为 170cm,预测其体重约为0.8517085.71=58.79kg,D错误故选D5、D【解析】根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【详解】对于,错误;对于,在上单调递减,错误;对于,错误;对于,在上单调递增,正确.故选:.【点睛】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.6、A【解析】先根据给

10、的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.【详解】由题意可知:BAC704030.ACD110,ACB1106545,ABC1803045105.又AB240.512.在ABC中,由正弦定理得,即,.故选:A.【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.7、C【解析】直接利用复数的除法的运算法则化简求解即可【详解】由得:本题正确选项:【点睛】本题考查复数的除法的运算法则的应用,考查计算能力8、B【解析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为,由诱导公式得,所以 .故选B【点睛】

11、本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.9、C【解析】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若an是等比数列,则,若,则,即成立,若成立,则,即,故“”是“”的充要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.10、D【解析】取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,即为二面角的平面角,过点B作于O,

12、则平面ACD,由,可得,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.11、B【解析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.12、D【解析】设,作为一个基底,表示向量,然后再用数量积公式求解.【详解】设,所以,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算

13、求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.【详解】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,.故答案为:.【点睛】本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.14、4【解析】由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个

14、量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值15、【解析】设,代入已知条件进行化简,根据复数相等的条件,求得的值.【详解】设,由,得,所以,所以.故答案为:【点睛】本小题主要考查共轭复数,考查复数相等的条件,属于基础题.16、.【解析】由A,B,C成等差数列得出B60,利用正弦定理得进而得代入三角形的面积公式即可得出【详解】A,B,C成等差数列,A+C2B,又A+B+C180,3B180,B60故由正弦定理 ,故 所以SABC,故答案为:【点睛】本题考查了等差数列的性质,三角形的面积公式,考查正弦

15、定理的应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)点在以为直径的圆上【解析】(1)根据题意列出关于,的方程组,解出,的值,即可得到椭圆的标准方程;(2)设点,则,求出直线的方程,进而求出点的坐标,再利用中点坐标公式得到点的坐标,下面结合点在椭圆上证出,所以点在以为直径的圆上【详解】(1)由题意可知,解得,椭圆的标准方程为:.(2)设点,则,直线的斜率为,直线的方程为:,令得,点的坐标为,点的坐标为,又点,在椭圆上,点在以为直径的圆上【点睛】本题主要考查了椭圆方程,考查了中点坐标公式,以及平面向量的基本知识,属于中档题18、(1)见解析(2)最

16、小值为1【解析】(1)根据抛物线的定义,判断出的轨迹为抛物线,并由此求得轨迹的方程.设出两点的坐标,利用导数求得切线的方程,由此求得点的坐标.写出直线的方程,联立直线的方程和曲线的方程,根据韦达定理求得点的坐标,并由此判断出始终在直线上,且.(2)设直线的倾斜角为,求得的表达式,求得的表达式,由此求得四边形的面积的表达式进而求得四边形的面积的最小值【详解】(1)动圆过定点,且与直线相切,动圆圆心到定点和定直线的距离相等,动圆圆心的轨迹是以为焦点的抛物线,轨迹的方程为:,设,直线的方程为:,即:,同理,直线的方程为:,由可得:, 直线方程为:,联立可得:, ,点始终在直线上且;(2)设直线的倾斜

17、角为,由(1)可得:, 四边形的面积为:,当且仅当或,即时取等号,四边形的面积的最小值为1.【点睛】本小题主要考查动点轨迹方程的求法,考查直线和抛物线的位置关系,考查抛物线中四边形面积的最值的计算,考查运算求解能力,属于中档题.19、(); ()分布列见解析,.【解析】()直接利用古典概型概率公式求 . ()先由题得可能取值为,再求x的分布列和期望.【详解】() ()可能取值为,的分布列为0123.【点睛】本题主要考查古典概型的计算,考查随机变量的分布列和期望的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)(2)详见解析(3)29【解析】(1)将,代入,可求出,可代入求

18、,可求结果(2)可求,通过反证法证明,(3)可推出,的最大值,就是集合中元素的最大值,求出【详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,得,故(2)证明:已知,由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,得,所以若,则存在,使,若,则存在,使,因此,对于正整数,考虑集合,即,下面证明:集合中至少有一元素是7的倍数反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,其中,则这两个元素的差为7的倍数,即,所以,与矛盾,

19、所以假设不成立,即原命题成立即集合中至少有一元素是7的倍数,不妨设该元素为,则存在,使,即,由已证可知,若,则存在,使,而,所以为负整数,设,则,且,所以,当,时,对于整数,若,则成立(3)下面用反证法证明:若对于整数,则,假设命题不成立,即,且则对于整数,存在,使成立,整理,得,又因为,所以且是7的倍数,因为,所以,所以矛盾,即假设不成立所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的最大值,又因为,所以【点睛】本题考查数列的综合应用,以及反证法,求最值,属于难题21、(1)证明见解析(2)【解析】(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知

20、,函数在上单调递增,在上单调递减,而,可知在区间上恒成立,即在区间上没有零点;(2)由题意可将转化为,构造函数,利用导数讨论研究其在上的单调性,由,即可求出的取值范围【详解】(1)若,则,设,则,故函数是奇函数当时,这时,又函数是奇函数,所以当时,.综上,当时,函数单调递增;当时,函数单调递减.又,故在区间上恒成立,所以在区间上没有零点.(2),由,所以恒成立,若,则,设,.故当时,又,所以当时,满足题意;当时,有,与条件矛盾,舍去; 当时,令,则,又,故在区间上有无穷多个零点,设最小的零点为,则当时,因此在上单调递增.,所以.于是,当时,得,与条件矛盾.故的取值范围是.【点睛】本题主要考查导

21、数的四则运算法则和导数公式的应用,以及利用导数研究函数的单调性和最值,涉及分类讨论思想和放缩法的应用,难度较大,意在考查学生的数学建模能力,数学运算能力和逻辑推理能力,属于较难题22、(1);(2);详见解析.【解析】(1)依题意可表示,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根; (2)由题意可表示,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;由已知关系,表示并相减即可表示递推关系,显然当时,成立,当,时,表示,由分组求和与正项数列性质放缩不等式得证.【详解】解:(1)依题意可得,两式相减,得,所以,因为,所以,且,解得.(2)因为,所以,两式相减,得,即.因为,所以,即.而当时,可得,故,所以对任意的正整数都成立,所以数列是等差数列,公差为1,首项为1,所以数列的通项公式为.因为,所以,两式相减,得,即,所以对任意的正整数,都有.令,而当时,显然成立,所以当,时,所以,即,所以,得证.【点睛】本题考查由前n项和关系求等比数列公比,求等差数列通项公式,还考查了由分组求和表示数列和并由正项数列放缩证明不等式,属于难题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁