吴忠高级中学2022-2023学年高三第六次模拟考试数学试卷含解析.doc

上传人:lil****205 文档编号:87995783 上传时间:2023-04-19 格式:DOC 页数:17 大小:1.44MB
返回 下载 相关 举报
吴忠高级中学2022-2023学年高三第六次模拟考试数学试卷含解析.doc_第1页
第1页 / 共17页
吴忠高级中学2022-2023学年高三第六次模拟考试数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《吴忠高级中学2022-2023学年高三第六次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《吴忠高级中学2022-2023学年高三第六次模拟考试数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( )ABCD2若某几何体的三视图如图所示,则该几何体的表面积为( )A240B264C274D2823若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(

2、 )A36 cm3B48 cm3C60 cm3D72 cm34已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为( )ABCD5若,则( )ABCD6关于的不等式的解集是,则关于的不等式的解集是( )ABCD7已知集合,若,则( )A4B4C8D88在直角坐标系中,已知A(1,0),B(4,0),若直线x+my1=0上存在点P,使得|PA|=2|PB|,则正实数m的最小值是( )AB3CD9已知双曲线C:=1(a0,b0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为( )ABC2D+110已知全集,集合,则阴影部分表示的集合是( )ABCD1

3、1抛物线的准线与轴的交点为点,过点作直线与抛物线交于、两点,使得是的中点,则直线的斜率为( )ABC1D12若函数的图象经过点,则函数图象的一条对称轴的方程可以为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的左、右焦点和点为某个等腰三角形的三个顶点,则双曲线C的离心率为_.14已知,则_.15角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是 16已知数列为正项等比数列,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在三角形中,角,的对边分别为,若.()求角;()若,求.18(12分)已知数列和满足:.

4、(1)求证:数列为等比数列;(2)求数列的前项和.19(12分)已知点P在抛物线上,且点P的横坐标为2,以P为圆心,为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且(1)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H过抛物线焦点F的直线l与抛物线C交于A,B,且,求的值20(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.21(12分)选修4-5:不等式选讲已知函数.(1)设,求不等式的解集;(2)已知,且的最小值等于,求实数的值.22(10分)已知,且的解集为.(1)求实数,的值;(2)若的图像与直线及围成的四边形的面积不小于14,求实数取值

5、范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分别求出球和圆柱的体积,然后可得比值.【详解】设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.【点睛】本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.2、B【解析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,所以表面积.故选B项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题3、B【解析】试题分析:该几何体上面是长方体

6、,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.4、C【解析】将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐近线对称,则圆心在渐近线上,所以.所以.故选:C【点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质 ,还考查了运算求解的能力,属于中档题.5、B【解析】由三角函数的诱导公式和倍角公式化简即可.【详解】因为,由诱导公式得,所以 .故选B【点睛】本题考查了三角函数的诱导公式和

7、倍角公式,灵活掌握公式是关键,属于基础题.6、A【解析】由的解集,可知及,进而可求出方程的解,从而可求出的解集.【详解】由的解集为,可知且,令,解得,因为,所以的解集为,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.7、B【解析】根据交集的定义,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.8、D【解析】设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的取值范围,即求正实数m的最小值.【详解】由题意,设点.,即,整理得,则,解得或.故选:.【点睛】本题

8、考查直线与方程,考查平面内两点间距离公式,属于中档题.9、B【解析】以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.10、D【解析】先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.【详解】由,可得或,又所以.故选:D.【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.11、B【解析】设点、,设直线的方程为,由题意得出,将直线的方程与抛物线的方程联立,列出韦达

9、定理,结合可求得的值,由此可得出直线的斜率.【详解】由题意可知点,设点、,设直线的方程为,由于点是的中点,则,将直线的方程与抛物线的方程联立得,整理得,由韦达定理得,得,解得,因此,直线的斜率为.故选:B.【点睛】本题考查直线斜率的求解,考查直线与抛物线的综合问题,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.12、B【解析】由点求得的值,化简解析式,根据三角函数对称轴的求法,求得的对称轴,由此确定正确选项.【详解】由题可知.所以令,得令,得故选:B【点睛】本小题主要考查根据三角函数图象上点的坐标求参数,考查三角恒等变换,考查三角函数对称轴的求法,属于中档题.二、填空题:本题共4

10、小题,每小题5分,共20分。13、【解析】由等腰三角形及双曲线的对称性可知或,进而利用两点间距离公式求解即可.【详解】由题设双曲线的左、右焦点分别为,因为左、右焦点和点为某个等腰三角形的三个顶点,当时,由可得,等式两边同除可得,解得(舍);当时,由可得,等式两边同除可得,解得,故答案为:【点睛】本题考查求双曲线的离心率,考查双曲线的几何性质的应用,考查分类讨论思想.14、【解析】由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.【详解】,.故答案为:【点睛】本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.15、【解析】试题分析:由

11、三角函数定义知,又由诱导公式知,所以答案应填:考点:1、三角函数定义;2、诱导公式16、27【解析】利用等比数列的性质求得,结合其下标和性质和均值不等式即可容易求得.【详解】由等比数列的性质可知,则,.当且仅当时取得最小值.故答案为:.【点睛】本题考查等比数列的下标和性质,涉及均值不等式求和的最小值,属综合基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()()8【解析】()由余弦定理可得,即可求出A,()根据同角的三角函数的关系和两角和的正弦公式和正弦定理即可求出.【详解】()由余弦定理,所以,所以,即,因为,所以;()因为,所以,因为,由正弦定理得,所以.【点睛

12、】本题考查利用正弦定理与余弦定理解三角形,属于简单题.18、(1)见解析(2)【解析】(1)根据题目所给递推关系式得到,由此证得数列为等比数列.(2)由(1)求得数列的通项公式,判断出,由此利用裂项求和法求得数列的前项和.【详解】(1)所以数列是以3为首项,以3为公比的等比数列.(2)由(1)知,为常数列,且,【点睛】本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题.19、 (1) (2)4【解析】(1)将点P横坐标代入抛物线中求得点P的坐标,利用点P到准线的距离d和勾股定理列方程求出p的值即可;(2)设A、B点坐标以及直线AB的方程,代入抛物线方程,利用根与系数的关系,以

13、及垂直关系,得出关系式,计算的值即可【详解】(1)将点P横坐标代入中,求得,P(2,),点P到准线的距离为,解得,抛物线C的方程为:;(2)抛物线的焦点为F(0,1),准线方程为,;设,直线AB的方程为,代入抛物线方程可得,由,可得,又,即,把代入得,则【点睛】本题考查直线与抛物线的位置关系,以及抛物线与圆的方程应用问题,考查转化思想以及计算能力,是中档题20、(1)见解析; (2)见解析【解析】(1)对函数求导,对参数讨论,得函数单调区间,进而求出极值;(2)是方程的两根,代入方程,化简换元,构造新函数利用函数单调性求最值可解.【详解】(1)依题意,;若,则,则函数在上单调递增,此时函数既无

14、极大值,也无极小值;若,则,令,解得,故当时,单调递增;当时,单调递减,此时函数有极大值,无极小值;若,则,令,解得,故当时,单调递增;当时,单调递减,此时函数有极大值,无极小值;(2)依题意,则,故,;要证:,即证,即证:,即证,设,只需证:,设,则,故在上单调递增,故,即,故.【点睛】本题考查函数极值及利用导数证明二元不等式.证明二元不等式常用方法是转化为证明一元不等式,再转化为函数最值问题.利用导数证明不等式的基本方法:(1)若与的最值易求出,可直接转化为证明;(2)若与的最值不易求出,可构造函数,然后根据函数 的单调性或最值,证明.21、 (1) (2) 【解析】(1)把f(x)去绝对

15、值写成分段函数的形式,分类讨论,分别求得解集,综合可得结论(2)把f(x)去绝对值写成分段函数,画出f(x)的图像,找出利用条件求得a的值【详解】(1)时,.当时,即为,解得.当时, ,解得.当时, ,解得.综上,的解集为.(2).,由的图象知,.【点睛】本题主要考查含绝对值不等式的解法及含绝对值的函数的最值问题,体现了分类讨论的数学思想,属于中档题22、(1),;(2)【解析】(1)解绝对值不等式得,根据不等式的解集为列出方程组,解出即可;(2)求出的图像与直线及交点的坐标,通过分割法将四边形的面积分为两个三角形,列出不等式,解不等式即可.【详解】(1)由得:,即,解得,.(2)的图像与直线及围成的四边形,.过点向引垂线,垂足为,则.化简得:,(舍)或.故的取值范围为.【点睛】本题主要考查了绝对值不等式的求法,以及绝对值不等式在几何中的应用,属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁