《2022-2023学年内蒙巴彦淖尔市高三3月份模拟考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年内蒙巴彦淖尔市高三3月份模拟考试数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的图象可能是( )ABCD2已知f(x)=是定义在R上的奇函数,则不等式f(x-3)f(9-x2)的解集为( )A(-2,6)B(-6,2)C(-4,3)D(-3,4)3抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为( )ABCD4已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是( )ABCD5的展开式中,满足的的系数之和为( )ABCD6已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为( )
3、ABCD7已知菱形的边长为2,则()A4B6CD8平行四边形中,已知,点、分别满足,且,则向量在上的投影为( )A2BCD9已知函数若函数在上零点最多,则实数的取值范围是( )ABCD10已知命题:使成立 则为( )A均成立B均成立C使成立D使成立11设函数,当时,则( )ABC1D12一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知是定义在上的偶函数,其导函数为若时,则不等式的解集是_14若实数满足不等式组,则的最小值是_15已知向量,满足,且已知向量,的夹角为,则的最小值是_16已知数列为等比数列,则_.三、解答
4、题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知的三个内角所对的边分别为,向量,且.(1)求角的大小;(2)若,求的值18(12分)已知凸边形的面积为1,边长,其内部一点到边的距离分别为.求证:.19(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.20(12分)某机构组织的家庭教育活动上有一个游戏,每次由一个小孩与其一位家长参与,测试家长对小孩饮食习惯的了解程度在每一轮游戏中,主持人给出A,B,C,D四种食物,要求小
5、孩根据自己的喜爱程度对其排序,然后由家长猜测小孩的排序结果设小孩对四种食物排除的序号依次为xAxBxCxD,家长猜测的序号依次为yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四个数字的一种排列定义随机变量X(xAyA)2+(xByB)2+(xCyC)2+(xDyD)2,用X来衡量家长对小孩饮食习惯的了解程度(1)若参与游戏的家长对小孩的饮食习惯完全不了解()求他们在一轮游戏中,对四种食物排出的序号完全不同的概率;()求X的分布列(简要说明方法,不用写出详细计算过程);(2)若有一组小孩和家长进行来三轮游戏,三轮的结果都满足X4,请判断这位家长对小孩饮食习惯是否了解,
6、说明理由21(12分)如图在直角中,为直角,分别为,的中点,将沿折起,使点到达点的位置,连接,为的中点()证明:面;()若,求二面角的余弦值22(10分)在; 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在中,内角A,B,C的对边分别为a,b,c,且满足_,求的面积.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先判断函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】函数的定义域为,该函数为偶函数,排除B、D选项;当时,排除C选项.故选:A.【点睛】本题考查根据函数
7、的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.2、C【解析】由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.【点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.3、A【解析】设,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,又,两式相减得:,直线的斜率为2,又过点,直线的方程为:,即,故选
8、:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系4、C【解析】在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】直线是曲线的一条对称轴.,又.平移后曲线为.曲线的一个对称中心为.,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.5、B【解析】,有,三种情形,用中的系数乘以中的系数,然后相加可得【详解】当时,的展开式中的系数为当,时,系数为;当,
9、时,系数为;当,时,系数为;故满足的的系数之和为故选:B【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键6、D【解析】利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.7、B【解析】根据菱形中的边角关系,利用余弦定理和数量积公
10、式,即可求出结果【详解】如图所示,菱形形的边长为2,且,故选B【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题.8、C【解析】将用向量和表示,代入可求出,再利用投影公式可得答案.【详解】解:,得,则向量在上的投影为.故选:C.【点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.9、D【解析】将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.【点睛】本题考查了
11、函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.10、A【解析】试题分析:原命题为特称命题,故其否定为全称命题,即考点:全称命题.11、A【解析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值【详解】,时,由题意,故选:A【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键12、B【解析】因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时
12、,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造,先利用定义判断的奇偶性,再利用导数判断其单调性,转化为,结合奇偶性,单调性求解不等式即可.【详解】令,则是上的偶函数,则在上递减,于是在上递增由得,即,于是,则,解得故答案为:【点睛】本题考查了利用函数的奇偶性、单调性解不等式,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.14、-1【解析】作出可行域,如图:由得,由图可知当直线经过A点时目标函数取得最小值,A(1,0)所以-1故答案为-115、【解析】求的最小值可以转化为求以A
13、B为直径的圆到点O的最小距离,由此即可得到本题答案.【详解】如图所示,设,由题,得,又,所以,则点C在以AB为直径的圆上,取AB的中点为M,则,设以AB为直径的圆与线段OM的交点为E,则的最小值是,因为,又,所以的最小值是.故答案为:【点睛】本题主要考查向量的综合应用问题,涉及到圆的相关知识与余弦定理,考查学生的分析问题和解决问题的能力,体现了数形结合的数学思想.16、81【解析】设数列的公比为,利用等比数列通项公式求出,代入等比数列通项公式即可求解.【详解】设数列的公比为,由题意知, 因为,由等比数列通项公式可得,解得,由等比数列通项公式可得,.故答案为:【点睛】本题考查等比数列通项公式;考
14、查运算求解能力;属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】利用平面向量数量积的坐标表示和二倍角的余弦公式得到关于的方程,解方程即可求解;由知,在中利用余弦定理得到关于的方程,与方程联立求出,进而求出,利用两角差的正弦公式求解即可.【详解】由题意得,,由二倍角的余弦公式可得, , 又因为,所以,解得或,. 在中,由余弦定理得,即 又因为,把代入整理得,解得,所以为等边三角形, ,即.【点睛】本题考查利用平面向量数量积的坐标表示和余弦定理及二倍角的余弦公式解三角形;熟练掌握余弦的二倍角公式和余弦定理是求解本题的关键;属于中档题、常考题型.1
15、8、证明见解析【解析】由已知,易得,所以利用柯西不等式和基本不等式即可证明.【详解】因为凸边形的面积为1,所以,所以(由柯西不等式得)(由均值不等式得)【点睛】本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.19、(1)(2)或【解析】(1)由已知条件得到方程组,解得即可;(2)由题意得直线的斜率存在,设直线方程为,联立直线与椭圆方程,消元、列出韦达定理,由得到的范围,设弦中点坐标为则,所以在轴上方,只需位于内(含边界)就可以,即满足,得到不等式组,解得即可;【详解】解:(1)由已知椭圆右焦点坐标为,离心率为,所以椭圆的标准方程为;(2)由题意
16、得直线的斜率存在,设直线方程为 联立,消元整理得,由,解得设弦中点坐标为,所以在轴上方,只需位于内(含边界)就可以, 即满足,即,解得或【点睛】本题考查了椭圆的定义标准方程及其性质,直线与椭圆的综合应用,考查了推理能力与计算能力,属于中档题20、(1)()()分布表见解析;(2)理由见解析【解析】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,家长的排序有种等可能结果,利用列举法求出其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,由此能求出他们在一轮游戏中,对四种食物排出的序号完全不同的概率(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况
17、,家长的排序一共有24种情况,由此能求出X的分布列(2)假设家长对小孩的饮食习惯完全不了解,在一轮游戏中,P(X4)=P(X=0)+ P(X=2)=,三轮游戏结果都满足“X4”的概率为,这个结果发生的可能性很小,从而这位家长对小孩饮食习惯比较了解【详解】(1)(i)若家长对小孩子的饮食习惯完全不了解,则家长对小孩的排序是随意猜测的,先考虑小孩的排序为xA,xB,xC,xD为1234的情况,家长的排序有24种等可能结果,其中满足“家长的排序与对应位置的数字完全不同”的情况有9种,分别为:2143,2341,2413,3142,3412,3421,4123,4312,4321,家长的排序与对应位置
18、的数字完全不同的概率P基小孩对四种食物的排序是其他情况,只需将角标A,B,C,D按照小孩的顺序调整即可,假设小孩的排序xA,xB,xC,xD为1423的情况,四种食物按1234的排列为ACDB,再研究yAyByCyD的情况即可,其实这样处理后与第一种情况的计算结果是一致的,他们在一轮游戏中,对四种食物排出的序号完全不同的概率为(ii)根据(i)的分析,同样只考虑小孩排序为1234的情况,家长的排序一共有24种情况,列出所有情况,分别计算每种情况下的x的值,X的分布列如下表: X 02 4 6 8 10 12 14 16 18 20 P (2)这位家长对小孩的饮食习惯比较了解理由如下:假设家长对
19、小孩的饮食习惯完全不了解,由(1)可知,在一轮游戏中,P(X4)P(X0)+P(X2),三轮游戏结果都满足“X4”的概率为()3,这个结果发生的可能性很小,这位家长对小孩饮食习惯比较了解【点睛】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是中档题21、()详见解析;().【解析】()取中点,连结、,四边形是平行四边形,由,得,从而,求出,由此能证明()以为原点,、所在直线分别为,轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【详解】证明:( )取中点,连结、, , 四边形是平行四边形, , , ,在中,又 为的中点,又 ,解:(), ,以为原点,、所
20、在直线分别为,轴,建立空间直角坐标系,设,则, ,设面的法向量,则,取,得,同理,得平面的法向量,设二面角的平面角为,则, 二面角的余弦值为【点睛】本题考查面面垂直及线面垂直性质定理、线面垂直判定与性质定理以及利用空间向量求线面角与二面角,考查基本分析求解能力,属中档题22、横线处任填一个都可以,面积为【解析】无论选哪一个,都先由正弦定理化边为角后,由诱导公式,展开后,可求得角,再由余弦定理求得,从而易求得三角形面积【详解】在横线上填写“”.解:由正弦定理,得.由,得.由,得.所以.又(若,则这与矛盾),所以.又,得.由余弦定理及,得,即.将代入,解得.所以.在横线上填写“”.解:由及正弦定理,得.又,所以有.因为,所以.从而有.又,所以由余弦定理及,得即.将代入,解得.所以.在横线上填写“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.将代入,解得.所以.【点睛】本题考查三角形面积公式,考查正弦定理、余弦定理,两角和的正弦公式等,正弦定理进行边角转换,求三角形面积时, 若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键