2022-2023学年吉林省公主岭市范家屯镇第一中学高三下学期第六次检测数学试卷含解析.doc

上传人:茅**** 文档编号:87794448 上传时间:2023-04-17 格式:DOC 页数:17 大小:1.93MB
返回 下载 相关 举报
2022-2023学年吉林省公主岭市范家屯镇第一中学高三下学期第六次检测数学试卷含解析.doc_第1页
第1页 / 共17页
2022-2023学年吉林省公主岭市范家屯镇第一中学高三下学期第六次检测数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2022-2023学年吉林省公主岭市范家屯镇第一中学高三下学期第六次检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年吉林省公主岭市范家屯镇第一中学高三下学期第六次检测数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数,的部分图象如图所示,则函数表达式为( )ABCD2设f(x)是定义在R上的偶函数,且在(0,+)单调递减,则( )ABCD3某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )ABCD4集合,则( )ABC

2、D5如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )ABCD6已知集合,则( )ABCD7已知函数,若方程恰有三个不相等的实根,则的取值范围为( )ABCD8如图,长方体中,点T在棱上,若平面.则( )A1BC2D9设不等式组表示的平面区域为,若从圆:的内部随机选取一点,则取自的概率为( )ABCD10已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为( )ABCD11在中,角的对边分别为,若,则的形状为( )A直角三角形B等腰非等边三角形C等腰或直角三角形D钝角三角形12已知是等差数列的前项

3、和,若,设,则数列的前项和取最大值时的值为( )A2020B20l9C2018D2017二、填空题:本题共4小题,每小题5分,共20分。13若,则_14(5分)已知,且,则的值是_15在平面直角坐标系中,双曲线(,)的左顶点为A,右焦点为F,过F作x轴的垂线交双曲线于点P,Q.若为直角三角形,则该双曲线的离心率是_.16在直角三角形中,为直角,点在线段上,且,若,则的正切值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女

4、教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.18(12分)在中,角的对边分别为,且,(1)求的值;(2)若求的面积19(12分)已知变换将平面上的点,分别变换为点,设变换对应的矩阵为(1)求矩阵;(2)求矩阵的特征值20(12分)已知椭圆的焦点在轴上,且顺次连接四个顶点恰好构成了一个边长为且面积为的菱形(1)求椭圆的方程;(2)设,过椭圆右焦点的直线交于、两点,若对满足条件的任意直线,不等式恒成立,求的最小值.21(12分)在四棱锥中,底面是边

5、长为2的菱形,是的中点.(1)证明:平面;(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.22(10分)已知的内角,的对边分别为,且.(1)求;(2)若的面积为,求的周长.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.【详解】由图像知,解得,因为函数过点,所以,即,解得,因为,所以,.故选:A【点睛】本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题.2、D【解析】利用是偶函数化简,结合在区间上的单调性,比

6、较出三者的大小关系.【详解】是偶函数,而,因为在上递减,即故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.3、C【解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选4、A【解析】解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.5、C【解析】利用正方体将三视图还原,观察可得最长棱为A

7、D,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.6、C【解析】解不等式得出集合A,根据交集的定义写出AB【详解】集合Ax|x22x30x|1x3,故选C【点睛】本题考查了解不等式与交集的运算问题,是基础题7、B【解析】由题意可将方程转化为,令,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,.因为,式两边同除以,得.所以方程有三个不等的正实根.记,则上述方程转化为.即,所以或.因为,当时,所以在,上单调递增,且时,.当时,在上单调

8、递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.8、D【解析】根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,点T在棱上,若平面.则,则,所以, 则,所以,故选:D.【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.9、B【解析】画出不等式组表示的可行域,求得阴影部分扇形对应的圆心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出中在圆内部的区域,如图所示,因为直线,的倾斜

9、角分别为,所以由图可得取自的概率为.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.10、B【解析】由题可知,再结合双曲线第一定义,可得,对有,即,解得,再对,由勾股定理可得,化简即可求解【详解】如图,因为,所以.因为所以.在中,即,得,则.在中,由得.故选:B【点睛】本题考查双曲线的离心率求法,几何性质的应用,属于中档题11、C【解析】利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【详解】解:因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:【点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查

10、学生分析解决问题的能力,属于基础题12、B【解析】根据题意计算,计算,得到答案.【详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为,所以,又,所以,则,所以14、【解析】由于,且,则,得,则15、2【解析】根据是等腰直角三角形,且为中点可得,再由双曲线的性质可得,解出即得.【详解】由题,设点,由,解得,即线段,为直角三角形,且,又为双曲线右焦点,过点,且轴,可得,整理得:,即,又,.故答案为:【点睛】本题考查双曲线的简单性质,是常

11、考题型.16、3【解析】在直角三角形中设,利用两角差的正切公式求解.【详解】设,则,故.故答案为:3【点睛】此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)28种;(2)分布见解析,.【解析】(1)分这名女教师分别来自党员学习组与非党员学习组,可得恰好有一名女教师的选派方法数;(2)X的可能取值为,再求出X的每个取值的概率,可得X的概率分布和数学期望.【详解】解:(1)选出的4名选手中恰好有一名女生的选派方法数为种.(2)X的可能取值为0,1,2,3. ,.故X的概率分

12、布为:X0123P所以.【点睛】本题主要考查组合数与组合公式及离散型随机变量的期望和方差,相对不难,注意运算的准确性.18、(1)3(2)78【解析】试题分析:(1)由两角和差公式得到,由三角形中的数值关系得到,进而求得数值;(2)由三角形的三个角的关系得到,再由正弦定理得到b=15,故面积公式为.解析:(1)在中,由,得为锐角,所以,所以, 所以. (2)在三角形中,由,所以, 由, 由正弦定理,得,所以的面积. 19、(1)(2)1或6【解析】(1)设,根据变换可得关于的方程,解方程即可得到答案;(2)求出特征多项式,再解方程,即可得答案;【详解】(1)设,则,即,解得,则(2)设矩阵的特

13、征多项式为,可得,令,可得或【点睛】本题考查矩阵的求解、矩阵的特征值,考查函数与方程思想、转化与化归思想,考查运算求解能力.20、(1) (2)【解析】(1)由已知条件列出关于和的方程,并计算出和的值,jike 得到椭圆的方程.(2)设出点和点坐标,运用点坐标计算出,分类讨论直线的斜率存在和不存在两种情况,求解出的最小值.【详解】(1)由己知得:,解得,所以,椭圆的方程(2)设,当直线垂直于轴时,且此时, 当直线不垂直于轴时,设直线由,得,.要使恒成立,只需,即最小值为【点睛】本题考查了求解椭圆方程以及直线与椭圆的位置关系,求解过程中需要分类讨论直线的斜率存在和不存在两种情况,并运用根与系数的

14、关系转化为只含一个变量的表达式进行求解,需要掌握解题方法,并且有一定的计算量.21、(1)证明见解析(2)【解析】(1)取中点,连接,根据菱形的性质,结合线面垂直的判定定理和性质进行证明即可;(2)根据面面垂直的判定定理和性质定理,可以确定点到直线的距离即为点到平面的距离,结合垂线段的性质可以确定点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.利用空间向量夹角公式,结合同角的三角函数关系式进行求解即可.【详解】(1)证明:取中点,连接,因为四边形为菱形且.所以,因为,所以,又,所以平面,因为平面,所以.同理可证,因为,所以平面.(2)解:由(1)得平面,所以平面平

15、面,平面平面.所以点到直线的距离即为点到平面的距离.过作的垂线段,在所有的垂线段中长度最大的为,此时必过的中点,因为为中点,所以此时,点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.则所以平面的一个法向量为,设平面的法向量为,则即取,则,所以,所以面与面所成二面角的正弦值为.【点睛】本题考查了线面垂直的判定定理和性质的应用,考查了二面角的向量求法,考查了推理论证能力和数学运算能力.22、(1);(2).【解析】(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.故三角形的周长为.【点睛】本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁