2023届上海市长宁区名校中考数学适应性模拟试题含解析.doc

上传人:茅**** 文档编号:87792463 上传时间:2023-04-17 格式:DOC 页数:20 大小:1.05MB
返回 下载 相关 举报
2023届上海市长宁区名校中考数学适应性模拟试题含解析.doc_第1页
第1页 / 共20页
2023届上海市长宁区名校中考数学适应性模拟试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2023届上海市长宁区名校中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届上海市长宁区名校中考数学适应性模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1关于x的方程=无解,则k的值为()A0或

2、B1C2D32在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,是白球的概率为( )ABCD3如图,在O中,直径AB弦CD,垂足为M,则下列结论一定正确的是( )AAC=CDBOM=BMCA=ACDDA=BOD4如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是()ABCD5在实数0,4中,最小的数是( )A0BCD46如图是由长方体和圆柱组成的几何体,它的俯视图是()ABCD7如图,

3、AB是O的直径,点E为BC的中点,AB=4,BED=120,则图中阴影部分的面积之和为( )A1BCD8如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角是45,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:) A30.6米B32.1 米C37.9米D39.4米9若,则的值是()A2B2C4D410春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿

4、舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A经过集中喷洒药物,室内空气中的含药量最高达到B室内空气中的含药量不低于的持续时间达到了C当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内二、填空题(共7小题,每小题3分,满分21分)11如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD

5、沿AE折叠,点D恰好落在BC边上的点F处,那么cosEFC的值是 12九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是_13如图,ABC与DEF位似,点O为位似中心,若AC3DF,则OE:EB_14如图,在ABC中,BAC=50,AC=2,AB=3,将ABC绕点A逆时针旋转50,得到AB1C1,则阴影部分的面积为_.152011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为 辆16方程的解是_17如图,直线经过、两点,则不等式的解集为_.三、解答题(共7小题,满分69分)18(10分)如图,已知ABC(1)请用直尺和圆

6、规作出A的平分线AD(不要求写作法,但要保留作图痕迹);(2)在(1)的条件下,若AB=AC,B=70,求BAD的度数19(5分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球20个,B种品牌的足球30个,共花费4600元,已知购买4个B种品牌的足球与购买5个A种品牌的足球费用相同(1)求购买一个A种品牌、一个B种品牌的足球各需多少元(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共42个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高5元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费

7、的80%,且保证这次购买的B种品牌足球不少于20个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?20(8分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15和60,如图,直线AB与地面垂直,AB50米,试求出点B到点C的距离(结果保留根号)21(10分)在ABC中,已知AB=AC,BAC=90,E为边AC上一点,连接BE(1)如图1,若ABE=15,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:

8、BG=AF+FG22(10分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)23(12分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平

9、行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0t12),连接BC,作BDBC交x轴于点D,连接CD,当点C在双曲线上时,求t的值;在0t6范围内,BCD的大小如果发生变化,求tanBCD的变化范围;如果不发生变化,求tanBCD的值;当时,请直接写出t的值24(14分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM(参考数据:sin15=,cos15=,tan15=2)(1)在点E、F运动过程中,判断EF与

10、BD的位置关系,并说明理由;(2)在点E、F运动过程中,判断AE与AM的数量关系,并说明理由;AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;(3)如图2,连接NF,在点E、F运动过程中,ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】方程两边同乘2x(x+3),得x+3=2kx,(2k-1)x=3,方程无解,当整式方程无解时,2k-1=0,k=,当分式方程无解时,x=0时,k无解,x=-3时,k=0,k=0或时,方程无解,故选A.2、D【解析】一个不透明的袋中装有10个只有颜色不

11、同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意 :从袋中任意摸出一个球,是白球的概率为=.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、D【解析】根据垂径定理判断即可【详解】连接DA直径AB弦CD,垂足为M,CM=MD,CAB=DAB2DAB=BOD,CAD=BOD故选D【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所

12、对的圆心角的一半是解答此题的关键4、C【解析】根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题【详解】解:由题意可得,y=,当x=40时,y=6,故选C【点睛】本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键5、D【解析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】正数大于0和一切负数,只需比较-和-1的大小,|-|-1|,最小的数是-1故选D【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小6、A【解析】分析:根据从上边看得到的图形

13、是俯视图,可得答案详解:从上边看外面是正方形,里面是没有圆心的圆,故选A点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图7、C【解析】连接AE,OD,OEAB是直径, AEB=90又BED=120,AED=30AOD=2AED=60OA=ODAOD是等边三角形A=60又点E为BC的中点,AED=90,AB=ACABC是等边三角形,EDC是等边三角形,且边长是ABC边长的一半2,高是BOE=EOD=60,和弦BE围成的部分的面积=和弦DE围成的部分的面积阴影部分的面积=故选C8、D【解析】解:延长AB交DC于H,作EGAB于G,如图所示,则GH=DE=15米,EG=DH,梯坎坡度i

14、=1:,BH:CH=1:,设BH=x米,则CH=x米,在RtBCH中,BC=12米,由勾股定理得:,解得:x=6,BH=6米,CH=米,BG=GHBH=156=9(米),EG=DH=CH+CD=+20(米),=45,EAG=9045=45,AEG是等腰直角三角形,AG=EG=+20(米),AB=AG+BG=+20+939.4(米)故选D9、D【解析】因为,所以,因为,故选D.10、C【解析】利用图中信息一一判断即可.【详解】解: A、正确不符合题意B、由题意x=4时,y=8,室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24-

15、2.5=21.535,故本选项错误,符合题意;D、正确不符合题意,故选C.【点睛】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题(共7小题,每小题3分,满分21分)11、.【解析】试题分析:根据翻转变换的性质得到AFE=D=90,AF=AD=5,根据矩形的性质得到EFC=BAF,根据余弦的概念计算即可由翻转变换的性质可知,AFE=D=90,AF=AD=5,EFC+AFB=90,B=90,BAF+AFB=90,EFC=BAF,cosBAF=,cosEFC=,故答案为:考点:轴对称的性质,矩形的性质,余弦的概念.12、【解析】用女生人数除以总

16、人数即可.【详解】由题意得,恰好是女生的准考证的概率是.故答案为:.【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=13、1:2【解析】ABC与DEF是位似三角形,则DFAC,EFBC,先证明OACODF,利用相似比求得AC3DF,所以可求OE:OBDF:AC1:3,据此可得答案【详解】解:ABC与DEF是位似三角形,DFAC,EFBCOACODF,OE:OBOF:OCOF:OCDF:ACAC3DFOE:OBDF:AC1:3,则OE:EB1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,

17、位似比等于相似比,位似图形的对应顶点的连线平行或共线14、【解析】试题分析:,S阴影=故答案为考点:旋转的性质;扇形面积的计算15、2.852【解析】根据科学记数法的定义,科学记数法的表示形式为a20n,其中2|a|20,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于2还是小于2当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,n为它第一个有效数字前0的个数(含小数点前的2个0)【详解】解:28500000一共8位,从而28500000=2.85216、1【解析】,x=1,代入最简公分母,x=1是方程的解.17、-1X2【解析】 经过点A,不等式xk

18、x+b-2的解集为.三、解答题(共7小题,满分69分)18、(1)见解析;(2)20;【解析】(1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;(2)运用等腰三角形的性质再根据角平分线的定义计算出BAD的度数即可.【详解】(1)如图,AD为所求;(2)AB=AC,AD平分BAC,ADBC,BDA=90,BAD=90B=9070=20【点睛】考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.19、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,具体见解析;(3)3150元【解析】试题分析:(1)、设A种品牌足球的单价

19、为x元,B种品牌足球的单价为y元,根据题意列出二元一次方程组,从而求出x和y的值得出答案;(2)、设第二次购买A种足球m个,则购买B种足球(50m)个,根据题意列出不等式组求出m的取值范围,从而得出答案;(3)、分别求出第二次购买时足球的单件,然后得出答案.试题解析:(1) 设A种品牌足球的单价为x元,B种品牌足球的单价为y元,解得 (2) 设第二次购买A种足球m个,则购买B种足球(50m)个,解得25m27m为整数 m25、26、27(3) 第二次购买足球时,A种足球单价为50454(元),B种足球单价为800.972当购买B种足球越多时,费用越高 此时255425723150(元)20、【

20、解析】试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.试题解析:作ADBC于点D,MBC=60,ABC=30, ABAN,BAN=90,BAC=105,则ACB=45, 在RtADB中,AB=1000,则AD=500,BD=,在RtADC中,AD=500,CD=500, 则BC=答:观察点B到花坛C的距离为米考点:解直角三角形21、(1) (2)证明见解析【解析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题(2)如图2中,作CQAC,交A

21、F的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题【详解】解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME在 RtABE 中,OB=OE,BE=2OA=2,MB=ME,MBE=MEB=15,AME=MBE+MEB=30,设 AE=x,则 ME=BM=2x,AM=x,AB2+AE2=BE2,x= (负根已经舍弃),AB=AC=(2+ ) ,BC= AB= +1作 CQAC,交 AF 的延长线于 Q, AD=AE ,AB=AC ,BAE=CAD,ABEACD(SAS),ABE=ACD,BAC=90,FGCD,AEB=CMF,GEM=GME,EG=MG,ABE=C

22、AQ,AB=AC,BAE=ACQ=90,ABECAQ(ASA),BE=AQ,AEB=Q,CMF=Q,MCF=QCF=45,CF=CF,CMFCQF(AAS),FM=FQ,BE=AQ=AF+FQ=AF=FM,EG=MG,BG=BE+EG=AF+FM+MG=AF+FG【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题22、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(7525)海里【解析】(1)过点B作BHCA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH

23、,在RtABH中,根据三角函数可求AH,进一步得到AD的长【详解】解:(1)过点B作BHCA交CA的延长线于点H,MBC60,CBA30,NAD30,BAC120,BCA180BACCBA30,BHBCsinBCA15075(海里)答:B点到直线CA的距离是75海里;(2)BD75海里,BH75海里,DH75(海里),BAH180BAC60,在RtABH中,tanBAH,AH25,ADDHAH(7525)(海里)答:执法船从A到D航行了(7525)海里【点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键23、

24、(1)直线的表达式为,双曲线的表达式为;(2);当时,的大小不发生变化,的值为;t的值为或【解析】(1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形

25、相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案【详解】(1)直线经过点和将点代入得解得故直线的表达式为将点代入直线的表达式得解得双曲线经过点,解得故双曲线的表达式为;(2)轴,点A的坐标为点C的横坐标为12将其代入双曲线的表达式得C的纵坐标为,即由题意得,解得故当点C在双曲线上时,t的值为;当时,的大小不发生变化,求解过程如下:若点D与点A重合由题意知,点C坐标为由两点距离公式得:由勾股定理得,即解得因此,在范围内,点D与点A不重合,且在点A左侧如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK由(1)知,直线AB的表达式为令得,则,即点K为CD的中点,(直角三

26、角形中,斜边上的中线等于斜边的一半)同理可得:A、D、B、C四点共圆,点K为圆心(圆周角定理);过点B作于M由题意和可知,点D在点A左侧,与点M重合是一个临界位置此时,四边形ACBD是矩形,则,即因此,分以下2种情况讨论:如图2,当时,过点C作于N又,即由勾股定理得即解得或(不符题设,舍去)当时,同理可得:解得或(不符题设,舍去)综上所述,t的值为或【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题24、(1)EFBD,见解析;(2)AE=AM,理由见解析;AEM能为等边三角形,理由见解析;

27、(3)ANF的面积不变,理由见解析【解析】(1)依据DE=BF,DEBF,可得到四边形DBFE是平行四边形,进而得出EFDB;(2)依据已知条件判定ADEABM,即可得到AE=AM;若AEM是等边三角形,则EAM=60,依据ADEABM,可得DAE=BAM=15,即可得到DE=16-8,即当DE=168时,AEM是等边三角形;(3)设DE=x,过点N作NPAB,反向延长PN交CD于点Q,则NQCD,依据DENBNA,即可得出PN=,根据SANF=AFPN=(x+8)=32,可得ANF的面积不变【详解】解:(1)EFBD证明:动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿

28、射线AB方向运动,DE=BF,又DEBF,四边形DBFE是平行四边形,EFDB;(2)AE=AMEFBD,F=ABD=45,MB=BF=DE,正方形ABCD,ADC=ABC=90,AB=AD,ADEABM,AE=AM;AEM能为等边三角形若AEM是等边三角形,则EAM=60,ADEABM,DAE=BAM=15,tanDAE=,AD=8,2=,DE=168,即当DE=168时,AEM是等边三角形;(3)ANF的面积不变设DE=x,过点N作NPAB,反向延长PN交CD于点Q,则NQCD,CDAB,DENBNA,=,PN=,SANF=AFPN=(x+8)=32,即ANF的面积不变【点睛】本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁