《2023届安徽省无为市中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省无为市中考五模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1下列计算结果为a6的是()Aa2a3 Ba12a2 C(a2)3 D(a2)32某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )A50.560.5 分B60.570.5 分C70.580.5 分D80.590.5 分3(2011贵州安顺,4
2、,3分)我市某一周的最高气温统计如下表:最高气温()25262728天 数1123则这组数据的中位数与众数分别是( )A27,28B27.5,28C28,27D26.5,274北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A0.72106平方米B7.2106平方米C72104平方米D7.2105平方米5如图,矩形中,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )A3B4CD56如图,三角形纸片ABC,AB10cm,BC7cm,AC6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则AED的周长为()A9cmB
3、13cmC16cmD10cm7已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a0b,则下列结论一定正确的是()Am+n0Bm+n0CmnDmn8广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A3.65103B3.65104C3.65105D3.651069九章算术是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就它的算法体系至今仍在推动着计算机的发展和应用书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸
4、),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A13寸B20寸C26寸D28寸10下列各数中,最小的数是 ABC0D二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知是的高线,且,则_.12如图,AB是半径为2的O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交O于点D,点E是CD的中点,连接AC,AD,EO则下列结论:ACB=120,ACD是等边三角形,EO的最小值为1,其中正确的是_(请将正确答案的序号填在横线上)13已知,且,则的值为_14若代数式有意义,则x的取
5、值范围是_15如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_16如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为,表示慕田峪长城的点的坐标为,则表示雁栖湖的点的坐标为_三、解答题(共8题,共72分)17(8分)解分式方程:18(8分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).(1)求该抛物线的函数表达式.(2)求直线AB关于x轴对称的直线的函数表达式.(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM PN时,求点P的横坐标的取值范围.19(8分)如图1,B(2m,0
6、),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线()过E,A两点(1)填空:AOB= ,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围20(8分)如图,O是A
7、BC的外接圆,点O在BC边上,BAC的平分线交O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P求证:PD是O的切线;求证:ABDDCP;当AB=5cm,AC=12cm时,求线段PC的长21(8分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:(1)求两人相遇时小明离家的距离;(2)求小丽离距离图书馆500m时所用的时间22(10分)如图,抛物线交X
8、轴于A、B两点,交Y轴于点C ,(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。23(12分)已知关于x的一元二次方程x2+(2m+3)x+m21有两根,求m的取值范围;若+1求m的值24(1)计算:()3()34cos30+;(2)解方程:x(x4)=2x8参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得【详解】A、a2a3=a5,此选项不符合题意;B、a12a2=a10,此选项不符合题意;C、(a2)3=a6,此
9、选项符合题意;D、(-a2)3=-a6,此选项不符合题意;故选C【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则2、C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,据此可得详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,所以中位数落在70.580.5分故选C点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按
10、照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数3、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28中位数是27这周最高气温的中位数与众数分别是27,28故选A.4、D【解析】试题分析:把一个数记成a10n(1a10,n整数位数少1)的形式,叫做科学记数法此题可记为12105平方米考点:科学记数法5、B【解析】连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求
11、【详解】连接DF,四边形ABCD是矩形 在中, 故选:B【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键6、A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE易求AE及AED的周长解:由折叠的性质知,CD=DE,BC=BE=7cmAB=10cm,BC=7cm,AE=ABBE=3cmAED的周长=AD+DE+AE=AC+AE=6+3=9(cm)故选A点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等7、D【解析】根据反比例函数的性质,可得答案【详解】y=的k=-21,图象位于二四象限,a1
12、,P(a,m)在第二象限,m1;b1,Q(b,n)在第四象限,n1n1m,即mn,故D正确;故选D【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k1时,图象位于二四象限是解题关键8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将365000这个数用科学记数法表示为3.651故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a
13、的值以及n的值9、C【解析】分析:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.详解:设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,O的直径为26寸,故选C点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题10、A【解析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答【详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A【点睛】此题考负数的大小比较,应理解数字大的负数反而小二、填空题(本大题共6个小题,每小题3分,共1
14、8分)11、4cm【解析】根据三角形的高线的定义得到,根据直角三角形的性质即可得到结论.【详解】解:是的高线,.故答案为:4cm.【点睛】本题考查了三角形的角平分线、中线、高线,含30角的直角三角形,熟练掌握直角三角形的性质是解题的关键12、【解析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题【详解】如图1,连接OA和OB,作OFAB由题知: 沿着弦AB折叠,正好经过圆心OOF=OA= OBAOF=BOF=60AOB=120ACB=120(同弧所对圆周角相
15、等)D=AOB=60(同弧所对的圆周角是圆心角的一半)ACD=180-ACB=60ACD是等边三角形(有两个角是60的三角形是等边三角形)故,正确 下面研究问题EO的最小值是否是1 如图2,连接AE和EFACD是等边三角形,E是CD中点AEBD(三线合一)又OFABF是AB中点即,EF是ABE斜边中线AF=EF=BF即,E点在以AB为直径的圆上运动所以,如图3,当E、O、F在同一直线时,OE长度最小此时,AE=EF,AEEFO的半径是2,即OA=2,OF=1AF= (勾股定理)OE=EF-OF=AF-OF=-1所以,不正确综上所述:正确,不正确故答案是:【点睛】考查了圆周角定理:在同圆或等圆中
16、,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径也考查了垂径定理13、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案详解:,设a=6x,b=5x,c=4x,a+b-2c=6,6x+5x-8x=6,解得:x=2,故a=1故答案为1点睛:此题主要考查了比例的性质,正确表示出各数是解题关键14、x3【解析】由代数式有意义,得x-30,解得x3,故答案为: x3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式
17、值为零:分子为零且分母不为零.15、3.【解析】先根据同角的余角相等证明ADEACD,在ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90,ABCD,DEAC,AED90,ADE+DAE90,DAE+ACD90,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决
18、问题.16、【解析】直接利用已知点坐标得出原点位置,进而得出答案【详解】解:如图所示:雁栖湖的点的坐标为:(1,-3)故答案为(1,-3)【点睛】本题考查坐标确定位置,正确得出原点的位置是解题关键三、解答题(共8题,共72分)17、【解析】试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解考点:解分式方程18、(1)(2)(3)【解析】(1)根据待定系数法,可得二次函数的解析式;(2)根据待定系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反数,可得答案;(3)根据PMPN,可得不等
19、式,利用绝对值的性质化简解不等式,可得答案【详解】(1)将A(1,1),B(2,5)代入函数解析式,得:,解得:,抛物线的解析式为y=x22x3;(2)设AB的解析式为y=kx+b,将A(1,1),B(2,5)代入函数解析式,得:,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=(x+1),化简,得:y=x1;(3)设M(n,n22n3),N(n,n+1),PMPN,即|n22n3|n+1|(n+1)(n-3)|-|n+1|1,|n+1|(|n-3|-1)1|n+1|1,|n-3|-11,|n-3|1,1n-31,解得:2n2故当PMPN时,求点P的横坐标xP的取值
20、范围是2xP2【点睛】本题考查了二次函数综合题解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式19、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入
21、,整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2
22、m,0),P(2m,m),A为抛物线的顶点,设抛物线解析式为,抛物线过点E(0,n),即m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a
23、=;若抛物线过点A(2m,2m),则,解得:am=2,m=2,a=1,则抛物线与四边形ABCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题20、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm【解析】【分析】(1)先判断出BAC=2BAD,进而判断出BOD=BAC=90,得出PDOD即可得出结论;(2)先判断出ADB=P,再判断出DCP=ABD,即可得出结论;(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用ABDDCP得出比例式求解即可得出结论【详解】(1)如图,连接OD,BC是O的直径,BAC=90,AD平分BAC,BAC=
24、2BAD,BOD=2BAD,BOD=BAC=90,DPBC,ODP=BOD=90,PDOD,OD是O半径,PD是O的切线;(2)PDBC,ACB=P,ACB=ADB,ADB=P,ABD+ACD=180,ACD+DCP=180,DCP=ABD,ABDDCP;(3)BC是O的直径,BDC=BAC=90,在RtABC中,BC=13cm,AD平分BAC,BAD=CAD,BOD=COD,BD=CD,在RtBCD中,BD2+CD2=BC2,BD=CD=BC=,ABDDCP,CP=16.9cm【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关
25、键.21、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分【解析】(1)根据题意得出小明的速度,进而得出得出小明离家的距离;(2)由(1)的结论得出小丽步行的速度,再列方程解答即可【详解】解:(1)根据题意可得小明的速度为:4500(10+5)300(米/分),30051500(米),两人相遇时小明离家的距离为1500米;(2)小丽步行的速度为:(45001500)(3510)120(米/分),设小丽离距离图书馆500m时所用的时间为x分,根据题意得,1500+120(x10)4500500,解得x答:小丽离距离图书馆500m时所用的时间为分【点睛】本
26、题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键22、(1);(2) (3,-4) 或(5,4)或(-5,4)【解析】(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;(2)先画出存在的点,然后通过平移和计算确定坐标;【详解】解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)设抛物线的解析式为y=ax2+bx+c则有: 解得所以函数解析式为:(2)存在,(3,-4) 或(5,4)或(-5,4)理由如下:如图:P1相当于C点向右平移了5个单位长度,则坐标为(5,4);P2相当于C点向左平移了5个单位长度,则坐标为(-5,
27、4);设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,则有A P3=BC, B P3=AC 即 (舍去)P3坐标为(3,-4)【点睛】本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.23、 (1)m;(2)m的值为2【解析】(1)根据方程有两个相等的实数根可知1,求出m的取值范围即可;(2)根据根与系数的关系得出+与的值,代入代数式进行计算即可【详解】(1)由题意知,(2m+2)241m21,解得:m;(2)由根与系数的关系得:+(2m+2),m2,+1,(2
28、m+2)+m21,解得:m11,m12,由(1)知m,所以m11应舍去,m的值为2【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,x1+x2,x1x2是解答此题的关键24、(1)3;(1)x1=4,x1=1【解析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8()4+1=81+1=3;(1)移项得:x(x4)1(x4)=0,(x4)(x1)=0,x4=0,x1=0,x1=4,x1=1【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.