《2023届安徽省合肥市庐江县中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省合肥市庐江县中考冲刺卷数学试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知ABC的三个顶点均在格点上,则cosA的值为( )ABCD2若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A1B3C0D1或33矩形具有而平行四边形不具有的性质是()A对角相等B对角线互
2、相平分C对角线相等D对边相等44的平方根是()A2B2C8D85抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x26如图,在菱形纸片ABCD中,AB=4,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上则sinAFG的值为( )ABCD7随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图依据统计图得出的以下四个结论正确的是()A的收入去年和前年相同B的收入所占比例前年的比去年的大C去年的收入为
3、2.8万D前年年收入不止三种农作物的收入8使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )ABCD9某排球队名场上队员的身高(单位:)是:,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均数变小,方差变大C平均数变大,方差变小D平均数变大,方差变大10如图,在64的正方形网格中,ABC的顶点均为格点,则sinACB=
4、()AB2CD二、填空题(共7小题,每小题3分,满分21分)11分解因式:4a3bab_12若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|+3|ab|=_13因式分解:_14若a3有平方根,则实数a的取值范围是_15设x)表示大于x的最小整数,如3)=4,1.2)=1,则下列结论中正确的是 _ .(填写所有正确结论的序号)0)=0;x)x的最小值是0;x)x的最大值是0;存在实数x,使x)x=0.5成立16如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若BDE的面积为1,则k =_17如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90的扇
5、形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_cm三、解答题(共7小题,满分69分)18(10分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点E(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由19(5分)我们知道中
6、,如果,那么当时,的面积最大为6;(1)若四边形中,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.(2)已知四边形中,求为多少时,四边形面积最大?并求出最大面积是多少?20(8分)如图,在ABC中,ACB90,ABC10,CDE是等边三角形,点D在边AB上如图1,当点E在边BC上时,求证DEEB;如图2,当点E在ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在ABC外部时,EHAB于点H,过点E作GEAB,交线段AC的延长线于点G,AG5CG,BH1求CG的长21(10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两
7、公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?22(10分)如图,抛物线yx2+bx+c与x轴交于点A(1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使BDQ是以BD为直角边的直角三角形?若
8、存在,请直接写出点Q的坐标;若不存在,请说明理由23(12分)阅读下面材料:已知:如图,在正方形ABCD中,边AB=a1按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小操作步骤作法由操作步骤推断(仅选取部分结论)第一步在第一个正方形ABCD的对角线AC上截取AE=a1,再作EFAC于点E,EF与边BC交于点F,记CE=a2(i)EAFBAF(判定依据是);(ii)CEF是等腰直角三角形;(iii)用含a1的式子表示a2为:第二步以CE为边构造第二个正方形CEFG;第三步在第二个正方形的对角线CF上截取FH=a2,再作IHCF于点H,IH与边
9、CE交于点I,记CH=a3:(iv)用只含a1的式子表示a3为:第四步以CH为边构造第三个正方形CHIJ这个过程可以不断进行下去若第n个正方形的边长为an,用只含a1的式子表示an为请解决以下问题:(1)完成表格中的填空: ; ; ; ;(2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图)24(14分)P是O内一点,过点P作O的任意一条弦AB,我们把PAPB的值称为点P关于O的“幂值”(1)O的半径为6,OP=1 如图1,若点P恰为弦AB的中点,则点P关于O的“幂值”为_;判断当弦AB的位置改变时,点P关于O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点
10、P关于0的“幂值”的取值范围; (2)若O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于O的“幂值”或“幂值”的取值范围_; (3)在平面直角坐标系xOy中,C(1,0),C的半径为3,若在直线y=x+b上存在点P,使得点P关于C的“幂值”为6,请直接写出b的取值范围_参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】过B点作BDAC,如图,由勾股定理得,AB=,AD=,cosA=,故选D2、B【解析】直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值【详解】x=1是方程(m1)x2+x+m25m+3=0的一个根,(m1)
11、+1+m25m+3=0,m24m+3=0,m=1或m=3,但当m=1时方程的二次项系数为0,m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.3、C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可解:矩形的性质有:矩形的对边相等且平行,矩形的对角相等,且都是直角,矩形的对角线互相平分、相等;平行四边形的性质有:平行四边形的对边分别相等且平行,平行四边形的对角分别相等,平行四边形的对角线互相平分;矩形具有而平行四边形不一定具有的性质是对角线相等,故选C4、B【解析】依据平方根的定义求解即可【详解】(1)1=
12、4,4的平方根是1故选B【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键5、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键6、B【解析】如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE由题意可得:DE=1,HDE=60,BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sinAFG的值【详解】解:如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE四边形ABCD是菱形,AB=4,DAB=60,
13、AB=BC=CD=AD=4,DAB=DCB=60,DCABHDE=DAB=60,点E是CD中点DE=CD=1在RtDEH中,DE=1,HDE=60DH=1,HE= AH=AD+DH=5在RtAHE中,AE=1 AN=NE=,AEGF,AF=EFCD=BC,DCB=60BCD是等边三角形,且E是CD中点BECD,BC=4,EC=1BE=1CDABABE=BEC=90在RtBEF中,EF1=BE1+BF1=11+(AB-EF)1EF=由折叠性质可得AFG=EFG,sinEFG= sinAFG = ,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定
14、理求线段长度是本题的关键7、C【解析】A、前年的收入为60000=19500,去年的收入为80000=26000,此选项错误;B、前年的收入所占比例为100%=30%,去年的收入所占比例为100%=32.5%,此选项错误;C、去年的收入为80000=28000=2.8(万元),此选项正确;D、前年年收入即为三种农作物的收入,此选项错误,故选C【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系8、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a
15、0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41旋钮的旋转角度在36和54之间,约为41时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点9、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为=188,方差为S2=;换人后
16、6名队员身高的平均数为=187,方差为S2=188187,平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10、C【解析】如图,由图可知BD=2、CD=1、BC=,根据sinBCA=可得答案【详解】解:如图所示,BD=2、CD=1,BC=,则sinBCA=,故选C【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理二、填空题(共7小题,每小题3分,满分21分)11、ab(2a+1)(2a-
17、1)【解析】先提取公因式再用公式法进行因式分解即可.【详解】4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.12、5a+4b3c【解析】直接利用数轴结合二次根式、绝对值的性质化简得出答案【详解】由数轴可得:a+c0,b-c0,a-b0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c故答案为-5a+4b-3c【点睛】此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键13、x3(y+1)(y-1)【解析】先提取公因式x3,再利用平方差公式分解可得【详解
18、】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案为x3(y+1)(y-1)【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤-先提取公因式,再利用公式法分解14、a1【解析】根据平方根的定义列出不等式计算即可.【详解】根据题意,得 解得: 故答案为【点睛】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15、【解析】根据题意x)表示大于x的最小整数,结合各项进行判断即可得出答案【详解】0)=1,故本项错误; x)x0,但是取不到0,故本项错误; x)x1,即最大值为1,故本项错误; 存在实数x,使x)
19、x=0.5成立,例如x=0.5时,故本项正确故答案是:【点睛】此题考查运算的定义,解题关键在于理解题意的运算法则.16、1【解析】分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到a(-)=1,最后解方程即可详解:设D(a,),点D为矩形OABC的AB边的中点,B(2a,),E(2a,),BDE的面积为1,a(-)=1,解得k=1故答案为1点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值17、【
20、解析】设圆锥的底面圆的半径为r,由于AOB90得到AB为圆形纸片的直径,则OBcm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,扇形OAB的圆心角为90,AOB90,AB为圆形纸片的直径,AB4cm,OBcm,扇形OAB的弧AB的长,2r,r(cm)故答案为【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长也考查了圆周角定理和弧长公式三、解答题(共7小题,满分69分)18、(1);(2)与x的函数关系式为,S存在
21、最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【解析】利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可
22、得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论【详解】当时,有,解得:,点A的坐标为当时,点B的坐标为,解得:,抛物线的解析式为点A的坐标为,点B的坐标为,直线AB的解析式为点D的横坐标为x,则点D的坐标为,点E的坐标为,如图点F的坐标为,点A的坐标为,点B的坐标为,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为,若要和相似,只需或如图设点D的坐标为,则点E的坐标为,当时,为等腰直角三角形,即,解得:舍去,点D的坐标为;当时,点E的纵
23、坐标为4,解得:,舍去,点D的坐标为综上所述:存在点D,使得和相似,此时点D的坐标为或故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标19、 (1)当,时有最大值1;(2)当时,面积有最大值32.【解析】(1)由题意当ADBC
24、,BDAD时,四边形ABCD的面积最大,由此即可解决问题(2)设BD=x,由题意:当ADBC,BDAD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题【详解】(1) 由题意当ADBC,BDAD时,四边形ABCD的面积最大,最大面积为6(16-6)=1故当,时有最大值1;(2)当,时有最大值,设, 由题意:当ADBC,BDAD时,四边形ABCD的面积最大,抛物线开口向下当 时,面积有最大值32.【点睛】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题20、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2【解析】(1)
25、、根据等边三角形的性质得出CED=60,从而得出EDB=10,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据ACO和CDE为等边三角形,从而得出ACD和OCE全等,然后得出COE和BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出COE和BOE全等,然后得出CEG和DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案【详解】(1)CDE是等边三角形, CED=60, EDB=60B=10,EDB=B, DE=EB;(2) ED=EB, 理由如下:取AB的中点O,连接CO、EO,ACB=90,ABC=10,
26、 A=60,OC=OA, ACO为等边三角形, CA=CO,CDE是等边三角形, ACD=OCE,ACDOCE, COE=A=60,BOE=60, COEBOE, EC=EB, ED=EB;(1)、取AB的中点O,连接CO、EO、EB, 由(2)得ACDOCE,COE=A=60,BOE=60,COEBOE,EC=EB,ED=EB, EHAB,DH=BH=1,GEAB, G=180A=120, CEGDCO, CG=OD,设CG=a,则AG=5a,OD=a,AC=OC=4a,OC=OB, 4a=a+1+1, 解得,a=2,即CG=221、解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成
27、此项工程需1.5x天根据题意,得,解得x=1经检验,x=1是方程的解且符合题意1.5 x=2甲,乙两公司单独完成此项工程,各需1天,2天(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y1500)元,根据题意得12(y+y1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:15000=100000(元);乙公司单独完成此项工程所需的施工费:2(50001500)=105000(元);让一个公司单独完成这项工程,甲公司的施工费较少【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可(2)分别求得两个公
28、司施工所需费用后比较即可得到结论22、 (1) ;(2) 当m2时,四边形CQMD为平行四边形;(3) Q1(8,18)、Q2(1,0)、Q3(3,2)【解析】(1)直接将A(-1,0),B(4,0)代入抛物线y=x2+bx+c方程即可;(2)由(1)中的解析式得出点C的坐标C(0,-2),从而得出点D(0,2),求出直线BD:yx+2,设点M(m,m+2),Q(m,m2m2),可得MQ=m2+m+4,根据平行四边形的性质可得QM=CD=4,即m2+m+44可解得m=2;(3)由Q是以BD为直角边的直角三角形,所以分两种情况讨论,当BDQ=90时,则BD2+DQ2=BQ2,列出方程可以求出Q1
29、(8,18),Q2(-1,0),当DBQ=90时,则BD2+BQ2=DQ2,列出方程可以求出Q3(3,-2)【详解】(1)由题意知,点A(1,0),B(4,0)在抛物线yx2+bx+c上,解得:所求抛物线的解析式为 (2)由(1)知抛物线的解析式为,令x0,得y2点C的坐标为C(0,2)点D与点C关于x轴对称点D的坐标为D(0,2)设直线BD的解析式为:ykx+2且B(4,0)04k+2,解得:直线BD的解析式为:点P的坐标为(m,0),过点P作x轴的垂线1,交BD于点M,交抛物线与点Q可设点M,Q MQ四边形CQMD是平行四边形QMCD4,即=4解得:m12,m20(舍去)当m2时,四边形C
30、QMD为平行四边形(3)由题意,可设点Q且B(4,0)、D(0,2)BQ2 DQ2 BD220当BDQ90时,则BD2+DQ2BQ2, 解得:m18,m21,此时Q1(8,18),Q2(1,0)当DBQ90时,则BD2+BQ2DQ2, 解得:m33,m44,(舍去)此时Q3(3,2)满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(1,0)、Q3(3,2)【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解23、(1)斜边和一条直角边分别相等的两个直角三角形全等(1)a1;(1)2a1;(1)n1a1;(2)见解析.【解析】(1)由题
31、意可知在RtEAF和RtBAF中,AE=AB,AF=AF,所以RtEAFRtBAF;由题意得AB=AE=a1,AC=a1,则CE=a2=a1a1=(1)a1;同上可知CF=CE=(1)a1,FH=EF=a2,则CH=a3=CFFH=(1)2a1;同理可得an=(1)n1a1;(2)根据题意画图即可.【详解】解:(1)斜边和一条直角边分别相等的两个直角三角形全等;理由是:如图1,在RtEAF和RtBAF中,RtEAFRtBAF(HL);四边形ABCD是正方形,AB=BC=a1,ABC=90,AC=a1,AE=AB=a1,CE=a2=a1a1=(1)a1;四边形CEFG是正方形,CEF是等腰直角三
32、角形,CF=CE=(1)a1,FH=EF=a2,CH=a3=CFFH=(1)a1(1)a1=(1)2a1;同理可得:an=(1)n1a1;故答案为斜边和一条直角边分别相等的两个直角三角形全等(1)a1;(1)2a1;(1)n1a1;(2)所画正方形CHIJ见右图.24、(1)20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明见解析;(2)点P关于O的“幂值”为r2d2;(3)3b.【解析】【详解】(1)如图1所示:连接OA、OB、OP由等腰三角形的三线合一的性质得到PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;过点P作O的弦ABOP,连接AA、BB先
33、证明APABPB,依据相似三角形的性质得到PAPB=PAPB从而得出结论;(2)连接OP、过点P作ABOP,交圆O与A、B两点由等腰三角形三线合一的性质可知AP=PB,然后在RtAPO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CPAB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围【详解】(1)如图1所示:连接OA、OB、OP,OA=OB,P为AB的中点,OPAB,在PBO中,由勾股定理得:P
34、B=2,PA=PB=2,O的“幂值”=22=20,故答案为:20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明如下:如图,AB为O中过点P的任意一条弦,且不与OP垂直,过点P作O的弦ABOP,连接AA、BB,在O中,AAP=BBP,APA=BPB,APABPB,PAPB=PAPB=20,当弦AB的位置改变时,点P关于O的“幂值”为定值;(2)如图3所示;连接OP、过点P作ABOP,交圆O与A、B两点,AO=OB,POAB,AP=PB,点P关于O的“幂值”=APPB=PA2,在RtAPO中,AP2=OA2OP2=r2d2,关于O的“幂值”=r2d2,故答案为:点P关于O的“幂值”为r2d2;(3)如图1所示:过点C作CPAB,CPAB,AB的解析式为y=x+b,直线CP的解析式为y=x+联立AB与CP,得,点P的坐标为(b,+b),点P关于C的“幂值”为6,r2d2=6,d2=3,即(b)2+(+b)2=3,整理得:b2+2b9=0,解得b=3或b=,b的取值范围是3b,故答案为:3b.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键