《安徽省合肥市庐江县2022-2023学年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省合肥市庐江县2022-2023学年中考押题数学预测卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A7.1107B0.71106C7.1107D711082方程(m2)x2+3mx+1=0是关于x的一元二次方程,则( )Am2Bm=2Cm=2Dm23如图,在五边形ABCDE中,A+B+E=300,DP,CP分别平分EDC、BCD,则P的度数是( )A60B65C55D504一元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx1=-3,x2=-75观察图中的“品”字形中个数之间的规律,根
3、据观察到的规律得出a的值为A75B89C103D1396如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )ABCD7如图,从一块圆形纸片上剪出一个圆心角为90的扇形ABC,使点A、B、C在圆周上,将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )A12cmB20cmC24cmD28cm8石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( )A3.410-9mB0.3410-9mC3.410-10mD3.410-11m9一元二次方程x22x0的根是()Ax2Bx0Cx10,x22Dx10,x2
4、210用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,直线l1l2,则1+2=_12如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:CE=CF;AEB=75;BE+DF=EF;S正方形ABCD=其中正确的序号是 (把你认为正确的都填上)13如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是_14如图,经过点B(2,0)的直线与直线相交于点A(1,2),则不等式的解集为 15已知反比例函数y=在第二象限内的图
5、象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B连接OC交反比例函数图象于点D,且,连接OA,OE,如果AOC的面积是15,则ADC与BOE的面积和为_16如图,半圆O的直径AB=2,弦CDAB,COD=90,则图中阴影部分的面积为_三、解答题(共8题,共72分)17(8分)一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面如图建立平面直角坐标系()为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标根据题意可知,该二次函数
6、图象上三个点的坐标分别是_;()求这个二次函数的解析式和自变量的取值范围18(8分)已知,ABC中,A=68,以AB为直径的O与AC,BC的交点分别为D,E()如图,求CED的大小;()如图,当DE=BE时,求C的大小19(8分)如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作ABx轴,交y轴于点D,交该二次函数图象于点B,连结BC(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m0)个单位,使平移后得到的二次函数图象的顶点落在ABC的内部(不包括ABC的边界),求m的取值范围;(3)点P是直线AC上
7、的动点,若点P,点C,点M所构成的三角形与BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)20(8分)如图,O为直线AB上一点,AOC=50,OD平分AOC,DOE=90写出图中小于平角的角求出BOD的度数小明发现OE平分BOC,请你通过计算说明道理21(8分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由22(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(3,0),B(0,3)
8、,C(1,0)(1)求此抛物线的解析式(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PDAB于点D动点P在什么位置时,PDE的周长最大,求出此时P点的坐标23(12分)如图,在1010的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xAxCxB,那么符合
9、上述条件的抛物线条数是()A7B8C14D1624国家发改委公布的商品房销售明码标价规定,从2011年5月1日起商品房销售实行一套一标价商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:打9.8折销售;不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?参考答案一、选择题(
10、共10小题,每小题3分,共30分)1、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】0.00000071的小数点向或移动7位得到7.1,所以0.00000071用科学记数法表示为7.1107,故选C.【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、D【解析】试题分析:根据一元二次方程的概念,可知m-20,解得m2.故选D3、A【解析】试题分析:根据五边形的内角和等于540,由A+B+E=300,可求BCD+CDE的度数,再根据角平分线的
11、定义可得PDC与PCD的角度和,进一步求得P的度数解:五边形的内角和等于540,A+B+E=300,BCD+CDE=540300=240,BCD、CDE的平分线在五边形内相交于点O,PDC+PCD=(BCD+CDE)=120,P=180120=60故选A考点:多边形内角与外角;三角形内角和定理4、C【解析】根据因式分解法直接求解即可得【详解】(x+3)(x7)=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.5、A【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22
12、,23,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B6、B【解析】根据折叠前后对应角相等可知解:设ABE=x,根据折叠前后角相等可知,C1BE=CBE=50+x,所以50+x+x=90,解得x=20故选B“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等7、C【解析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=,解得r=R,然后
13、利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径【详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:2r=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm故选C【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长8、C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示的形式,所以将111111111134用科学记数法表示,故选C考点:科学记数法9、C【解析】方程左边分解因式后,利用两数相乘积为0
14、,两因式中至少有一个为0转化为两个一元一次方程来求解【详解】方程变形得:x(x1)0,可得x0或x10,解得:x10,x11故选C【点睛】考查了解一元二次方程因式分解法,熟练掌握因式分解的方法是解本题的关键10、A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A二、填空题(本大题共6个小题,每小题3分,共18分)11、30【解析】分别过A、B作l1的平行线AC和BD,则可知ACBDl1l2,再利用平行线的性质求得答案【详解】如图,分别过A、B作l1的平行线AC和BD,l1l2,ACBDl1l2,1=EAC,2=FBD,CAB+DBA=180,EAB+FBA=125+85=
15、210,EAC+CAB+DBA+FBD=210,即1+2+180=210,1+2=30,故答案为30【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补12、【解析】分析:四边形ABCD是正方形,AB=AD。AEF是等边三角形,AE=AF。在RtABE和RtADF中,AB=AD,AE=AF,RtABERtADF(HL)。BE=DF。BC=DC,BCBE=CDDF。CE=CF。说法正确。CE=CF,ECF是等腰直角三角形。CEF=45。AEF=60,AEB=75。说法正确。如图,连接AC,交EF于G点,A
16、CEF,且AC平分EF。CADDAF,DFFG。BE+DFEF。说法错误。EF=2,CE=CF=。设正方形的边长为a,在RtADF中,解得,。说法正确。综上所述,正确的序号是。13、【解析】试题解析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OMAB,且OC=MC=1,在RTAOC中,OA=2,OC=1,cosAOC=,AC=AOC=60,AB=2AC=2,AOB=2AOC=120,则S弓形ABM=S扇形OAB-SAOB=,S阴影=S半圆-2S弓形ABM=22-2()=2故答案为214、【解析】分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围由图象可知,此时15、1【解
17、析】连结AD,过D点作DGCM,AOC的面积是15,CD:CO=1:3,OG:OM=2:3,ACD的面积是5,ODF的面积是15=,四边形AMGF的面积=,BOE的面积=AOM的面积=12,ADC与BOE的面积和为5+12=1,故答案为:1.16、 【解析】解:弦CDAB,SACD=SOCD,S阴影=S扇形COD=故答案为三、解答题(共8题,共72分)17、(0,),(4,3)【解析】试题分析:()根据“刚出手时离地面高度为米、经过4秒到达离地面3米的高度和经过1秒落到地面”可得三点坐标;()利用待定系数法求解可得试题解析:解:()由题意知,该二次函数图象上的三个点的坐标分别是(0,)、(4,
18、3)、(1,0)故答案为:(0,)、(4,3)、(1,0)()设这个二次函数的解析式为y=ax2+bx+c,将()三点坐标代入,得:,解得:,所以所求抛物线解析式为y=x2+x+,因为铅球从运动员抛出到落地所经过的时间为1秒,所以自变量的取值范围为0x118、()68()56【解析】(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明CED=A即可,(2)连接AE,在RtAEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.【详解】()四边形ABED 圆内接四边形,A+
19、DEB=180,CED+DEB=180,CED=A,A=68,CED=68()连接AEDE=BD,,DAE=EAB=CAB=34,AB是直径,AEB=90,AEC=90,C=90DAE=9034=56【点睛】本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题19、(1)y=x2+2x+4;M(1,5);(2)2m4;(3)P1(),P2(),P3(3,1),P4(3,7)【解析】试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,
20、将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得MCP=90,则若PCM与BCD相似,则要进行分类讨论,分成PCMBDC或PCMCDB两种,然后利用边的对应比值求出点坐标试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=x2+bx+c得,解得 二次函数解析式为y=x2+2x+4, 配方得y=(x1)2+5,点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得:直线AC的解析式为y=x+4,如图所示,对称轴直线x=1与ABC两边分别交于点E、点F把x=1代入直线AC解析式y=x
21、+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)15m3,解得2m4;(3)连接MC,作MGy轴并延长交AC于点N,则点G坐标为(0,5) MG=1,GC=54=1MC=, 把y=5代入y=x+4解得x=1,则点N坐标为(1,5),NG=GC,GM=GC, NCG=GCM=45, NCM=90,由此可知,若点P在AC上,则MCP=90,则点D与点C必为相似三角形对应点若有PCMBDC,则有BD=1,CD=3, CP=, CD=DA=3, DCA=45,若点P在y轴右侧,作PHy轴, PCH=45,CP= PH=把x=代入y=x+4,解得y=, P1();同理可得,若点P在y轴左侧,
22、则把x=代入y=x+4,解得y= P2();若有PCMCDB,则有 CP=3 PH=3=3,若点P在y轴右侧,把x=3代入y=x+4,解得y=1;若点P在y轴左侧,把x=3代入y=x+4,解得y=7P3(3,1);P4(3,7)所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(3,7)考点:二次函数综合题20、(1)答案见解析 (2)155 (3)答案见解析【解析】(1)根据角的定义即可解决;(2)根据BOD=DOC+BOC,首先利用角平分线的定义和邻补角的定义求得DOC和BOC即可;(3)根据COE=DOEDOC和BOE=BODDOE分别求得COE与BOE的度数即
23、可说明【详解】(1)图中小于平角的角AOD,AOC,AOE,DOC,DOE,DOB,COE,COB,EOB(2)因为AOC=50,OD平分AOC,所以DOC=25,BOC=180AOC=18050=130,所以BOD=DOC+BOC=155(3)因为DOE=90,DOC=25,所以COE=DOEDOC=9025=65又因为BOE=BODDOE=15590=65,所以COE=BOE,所以OE平分BOC【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键21、(1)见解析;(2)AFCE,见解析.【解析】(1)直接利用全等三角三角形判定与性质进而得出FOCEOA(
24、ASA),进而得出答案; (2)利用平行四边形的判定与性质进而得出答案【详解】(1)证明:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,AO=CO,DCAB,DC=AB,FCA=CAB,在FOC和EOA中,FOCEOA(ASA),FC=AE,DC-FC=AB-AE,即DF=EB;(2)AFCE,理由:FC=AE,FCAE,四边形AECF是平行四边形,AFCE【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出FOCEOA(ASA)是解题关键22、(1)y=x22x+1;(2)( ,)【解析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入
25、y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明AOB是等腰直角三角形,得出BAO=45,再证明PDE是等腰直角三角形,则PE越大,PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,PDE的周长也最大将x=-代入-x2-2x+1,进而得到P点的坐标【详解】解:(1)抛物线y=ax2+bx+c经过点A(1,0),B(0,1),C(1,0),解得,抛物线的解析式为y=x22x+1;
26、(2)A(1,0),B(0,1),OA=OB=1,AOB是等腰直角三角形,BAO=45PFx轴,AEF=9045=45,又PDAB,PDE是等腰直角三角形,PE越大,PDE的周长越大设直线AB的解析式为y=kx+b,则,解得,即直线AB的解析式为y=x+1设P点的坐标为(x,x22x+1),E点的坐标为(x,x+1),则PE=(x22x+1)(x+1)=x21x=(x+)2+,所以当x=时,PE最大,PDE的周长也最大当x=时,x22x+1=()22()+1=,即点P坐标为(,)时,PDE的周长最大【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式
27、,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中23、C【解析】根据在OB上的两个交点之间的距离为3,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解【详解】解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1故
28、选C【点睛】本题是二次函数综合题主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观24、 (1) 每次下调10% (2) 第一种方案更优惠【解析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答【详解】解:(1)设平均每次下调的百分率为x,根据题意得5000(1-x)2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%(2)9.8折=98%,100405098%=396900(元)1004050-1001.5122=401400(元),396900401400,所以第一种方案更优惠答:第一种方案更优惠【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.