《2023届吉林省长春市高新区重点中学中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届吉林省长春市高新区重点中学中考数学押题试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知反比函数的图象过RtABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若ABO的周长为,AD=2,则ACO的面积为( )AB1C2D42如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A
2、点A与点BB点A与点DC点B与点DD点B与点C3下列几何体中,其三视图都是全等图形的是()A圆柱B圆锥C三棱锥D球4如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A cmBcmCcmD cm5二次函数(a、b、c是常数,且a0)的图象如图所示,下列结论错误的是( )A4acb2Babc0Cb+c3aDab6已知是二元一次方程组的解,则的算术平方根为( )A2BC2D47将弧长为2cm、圆心角为120的扇形围成一个圆锥的侧面,则这个圆锥的高是()A cmB2 cmC2cmD cm8某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直
3、方图,由图可知,下列结论正确的是( )A最喜欢篮球的人数最多B最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C全班共有50名学生D最喜欢田径的人数占总人数的10 %9如图所示几何体的主视图是( )ABCD10二次函数y=ax2+bx+c(a0)的图象如图,a,b,c的取值范围( )Aa0,b0,c0 Ba0,c0,b0,c0,b0,c0二、填空题(共7小题,每小题3分,满分21分)11如图,点A、B、C是O上的三点,且AOB是正三角形,则ACB的度数是 。12如图,ABC内接于O,DA、DC分别切O于A、C两点,ABC=114,则ADC的度数为_13如图,点A,B在反比例函数y(x0)的图象上,点
4、C,D在反比例函数y(k0)的图象上,ACBDy轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为_14如图,在ABC中,C90,AC8,BC6,点D是AB的中点,点E在边AC上,将ADE沿DE翻折,使点A落在点A处,当AEAC时,AB_15如图,在ABC中,CA=CB,ACB=90,AB=2,点D为AB的中点,以点D为圆心作圆心角为90的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为_16计算:(2)=_.17如图所示,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则AED的正切值等于_三、解答题(共7小题,满分69分)18(10分)有甲、乙两
5、个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和1;乙袋中有三个完全相同的小球,分别标有数字1、0和1小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y)(1)请用表格或树状图列出点P所有可能的坐标;(1)求点P在一次函数yx1图象上的概率19(5分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图请你根据统计图中所提供的信息解答下列问题:(1)接
6、受问卷调查的学生共有_名,扇形统计图中“基本了解”部分所对应扇形的圆心角为_;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率20(8分)先化简,再求值:(),其中x的值从不等式组的整数解中选取21(10分)已知OAB在平面直角坐标系中的位置如图所示请解答以下问题:按
7、要求作图:先将ABO绕原点O逆时针旋转90得OA1B1,再以原点O为位似中心,将OA1B1在原点异侧按位似比2:1进行放大得到OA2B2;直接写出点A1的坐标,点A2的坐标22(10分)如图,在四边形ABCD中,ADBC,B=90,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边EFG,设E点移动距离为x(0x6)(1)DCB= 度,当点G在四边形ABCD的边上时,x= ;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;(3)当2x6时,求EFG与
8、四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值23(12分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用24(14分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30,然后向山脚直行60米到达C处,再测得山顶A的仰角为45,求山高AD的长度(测角仪高度忽略不计)参考答案一、选择题(每小题只有一个正确答案,每
9、小题3分,满分30分)1、A【解析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可【详解】在RtAOB中,AD=2,AD为斜边OB的中线,OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2-x,根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x
10、1=+,x2=-,AB=+,OA=-,过D作DEx轴,交x轴于点E,可得E为AO中点,OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),在RtDEO中,利用勾股定理得:DE=(+)),k=-DEOE=-(+))(-))=1.SAOC=DEOE=,故选A【点睛】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键2、A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数倒数的定义:若两个数的乘积是1,我
11、们就称这两个数互为倒数根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数故选A考点:1倒数的定义;2数轴3、D【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.4、B【解析】试题解析:菱形ABCD的对角线 根据勾股定理, 设菱形的高为h,则菱形的面积 即 解得 即菱形的高为cm故选B5、D【解析】根
12、据二次函数的图象与性质逐一判断即可求出答案【详解】由图象可知:0,b24ac0,b24ac,故A正确;抛物线开口向上,a0,抛物线与y轴的负半轴,c0,抛物线对称轴为x=0,b0,abc0,故B正确;当x=1时,y=a+b+c0,4a0,a+b+c4a,b+c3a,故C正确;当x=1时,y=ab+c0,ab+cc,ab0,ab,故D错误;故选D考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用6、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根【分析】是二元一次方程组的解,解得即
13、的算术平方根为1故选C7、B【解析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2=,解得R=3cm;设圆锥底面半径为rcm,则2=2r,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.8、C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D.
14、 最喜欢田径的人数占总人数的=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.9、C【解析】从正面看几何体,确定出主视图即可【详解】解:几何体的主视图为 故选C【点睛】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图10、D【解析】试题分析:根据二次函数的图象依次分析各项即可。由抛物线开口向上,可得,再由对称轴是,可得,由图象与y轴的交点再x轴下方,可得,故选D.考点:本题考查的是二次函数的性质点评:解答本题的关键是熟练掌握二次函数的性质:的正负决定抛物线开口方向,对称轴是,C的正负决定与Y轴的交点位置。二、填空题(共7小
15、题,每小题3分,满分21分)11、30【解析】试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.AOB是正三角形AOB=60ACB=30.考点:圆周角定理点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.12、48【解析】如图,在O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出AKC的度数,利用圆周角定理可求出AOC的度数,由切线性质可知OAD=OCB=90,可知ADC+AOC=180,即可得答案.【详解】如图,在O上取一点K,连接AK、KC、OA、OC四边形AKCB内接于圆,AKC+ABC=180,ABC=114,AKC=66,AO
16、C=2AKC=132,DA、DC分别切O于A、C两点,OAD=OCB=90,ADC+AOC=180,ADC=48故答案为48【点睛】本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.13、1【解析】过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换SOACSCOMSAOM,SABDS梯形AMNDS梯形AAMNB进而求解【详解】解:过A作x轴垂线,过B作x轴垂线,点A,B在反比例函数y(x0)的图象上,点A,B的
17、横坐标分别为1,2,A(1,1),B(2,),ACBDy轴,C(1,k),D(2,),OAC与ABD的面积之和为,SABDS梯形AMNDS梯形AAMNB,k1,故答案为1【点睛】本题考查反比例函数的性质,k的几何意义能够将三角形面积进行合理的转换是解题的关键14、或7 【解析】分两种情况:如图1, 作辅助线, 构建矩形, 先由勾股定理求斜边AB=10, 由中点的定义求出AD和BD的长, 证明四边形HFGB是矩形, 根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得: DA E=A,A D=AD=5, 由矩形性质和勾股定理可以得出结论: A B=;如图2, 作辅助线, 构建矩形A MN
18、F,同理可以求出A B的长.【详解】解:分两种情况:如图1, 过D作DGBC与G, 交A E与F, 过B作BHA E与H,D为AB的中点,BD=AB=AD,C=,AC=8,BC=6,AB=10,BD=AD=5,sin ABC=,DG=4,由翻折得: DA E=A, A D=AD=5,sinDA E=sin A=.DF=3,FG=4-3=1,AEAC,BCAC,AE/BC,HFG+DGB=,DGB=,HFG=,EHB=,四边形HFGB是矩形,BH=FG=1,同理得: A E=AE=8 -1=7,AH=AE-EH=7-6=1,在RtAHB中 , 由勾股定理得: A B=. 如图2, 过D作MN/A
19、C, 交BC与于N,过A 作A F/AC, 交BC的延长线于F,延长A E交直线DN于M, AEAC,A MMN, A EAF,M=MAF=,ACB=,F=ACB=,四边形MA FN県矩形,MN=AF,FN=AM,由翻折得: A D=AD=5,RtAMD中,DM=3,AM=4,FN=AM=4,RtBDN中,BD=5,DN=4, BN=3,A F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,RtABF中, 由勾股定理得: A B=;综上所述,AB的长为或.故答案为:或.【点睛】本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.15、【解析】连接CD,根据题意可得DCEB
20、DF,阴影部分的面积等于扇形的面积减去BCD的面积【详解】解:连接CD,作DMBC,DNACCA=CB,ACB=90,点D为AB的中点,DC=AB=1,四边形DMCN是正方形,DM=则扇形FDE的面积是:CA=CB,ACB=90,点D为AB的中点,CD平分BCA,又DMBC,DNAC,DM=DN,GDH=MDN=90,GDM=HDN,则在DMG和DNH中, ,DMGDNH(AAS),S四边形DGCH=S四边形DMCN=则阴影部分的面积是: 故答案为:【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明DMGDNH,得到S四边形DGCH=S四边形DMCN是关键16、-1【解析
21、】根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论【详解】 故答案为【点睛】本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键17、【解析】根据同弧或等弧所对的圆周角相等来求解【详解】解:E=ABD,tanAED=tanABD=故选D【点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解三、解答题(共7小题,满分69分)18、(1)见解析;(1).【解析】试题分析:(1)画出树状图(或列表),根据树状图(或表格)列出点P所有可能的坐标即可;(1)根据(1)的所有结果,计算出这些结果中点P在一次函数图像上的个数,即可求得点P在一次函
22、数图像上的概率.试题解析:(1)画树状图:或列表如下:点P所有可能的坐标为(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).只有(1,1)与(-1,-1)这两个点在一次函数图像上,P(点P在一次函数图像上)=.考点:用(树状图或列表法)求概率.19、(1)60;90;统计图详见解析;(2)300;(3)【解析】试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出所有等可能的情况数,找出两人打平的情
23、况数,即可求出所求的概率试题解析:(1)根据题意得:3050%=60(名),“了解”人数为60(15+30+10)=5(名),“基本了解”占的百分比为100%=25%,占的角度为25%360=90,补全条形统计图如图所示:(2)根据题意得:900=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪 石 布剪 (剪,剪) (石,剪) (布,剪)石 (剪,石) (石,石) (布,石)布 (剪,布) (石,布) (布,布)所有等可能的情况有9种,其中两人打平的情况有3种,则P=考点:1、条形统计图,2、扇形统计
24、图,3、列表法与树状图法20、-【解析】先化简,再解不等式组确定x的值,最后代入求值即可.【详解】(),=解不等式组,可得:2x2,x=1,0,1,2,x=1,0,1时,分式无意义,x=2,原式=21、 (1)见解析;(2)点A1的坐标为:(1,3),点A2的坐标为:(2,6)【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案【详解】(1)如图所示:OA1B1,OA2B2,即为所求;(2)点A1的坐标为:(1,3),点A2的坐标为:(2,6)【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键22、 (1) 30;2;(2
25、)x=1;(3)当x=时,y最大=;【解析】(1)如图1中,作DHBC于H,则四边形ABHD是矩形AD=BH=3,BC=6,CH=BCBH=3,当等边三角形EGF的高= 时,点G在AD上,此时x=2;(2)根据勾股定理求出的长度,根据三角函数,求出ADB=30,根据中点的定义得出根据等边三角形的性质得到,即可求出x的值;(3)图2,图3三种情形解决问题当2x3时,如图2中,点E、F在线段BC上,EFG与四边形ABCD重叠部分为四边形EFNM;当3x6时,如图3中,点E在线段BC上,点F在射线BC上,重叠部分是ECP;【详解】(1)作DHBC于H,则四边形ABHD是矩形AD=BH=3,BC=6,
26、CH=BCBH=3,在RtDHC中,CH=3, 当等边三角形EGF的高等于时,点G在AD上,此时x=2,DCB=30,故答案为30,2,(2)如图ADBCA=180ABC=18090=90在RtABD中, ADB=30G是BD的中点 ADBCADB=DBC=30GEF是等边三角形,GFE=60BGF=90在RtBGF中, 2x=2即x=1;(3)分两种情况:当2x3,如图2点E、点F在线段BC上GEF与四边形ABCD重叠部分为四边形EFNMFNC=GFEDCB=6030=30FNC=DCBFN=FC=62xGN=x(62x)=3x6FNC=GNM=30,G=60GMN=90在RtGNM中, 当
27、时,最大 当3x6时,如图3,点E在线段BC上,点F在线段BC的延长线上,GEF与四边形ABCD重叠部分为ECPPCE=30,PEC=60EPC=90在RtEPC中EC=6x, 对称轴为 当x6时,y随x的增大而减小当x=3时,最大综上所述:当时,最大【点睛】属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.23、(1)购进A种树苗1棵,B种树苗2棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元【解析】(1)设购进A种树苗x棵,则购进B种树苗(12x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即
28、可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【详解】解:(1)设购进A种树苗x棵,则购进B种树苗(12x)棵,根据题意得:80x+60(12x )=1220,解得:x=112x=2答:购进A种树苗1棵,B种树苗2棵(2)设购进A种树苗x棵,则购进B种树苗(12x)棵,根据题意得:12xx,解得:x8.3购进A、B两种树苗所需费用为80x+60(12x)=20x+120,是x的增函数,费用最省需x取最小整数9,此时12x=8,所需费用为209+120=1200(元)答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元24、30米【解析】设ADxm,在RtACD中,根据正切的概念用x表示出CD,在RtABD中,根据正切的概念列出方程求出x的值即可【详解】由题意得,ABD30,ACD45,BC60m,设ADxm,在RtACD中,tanACD,CDADx,BDBC+CDx+60,在RtABD中,tanABD,米,答:山高AD为30米【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键