《2023届内蒙古通辽市开鲁县重点中学中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届内蒙古通辽市开鲁县重点中学中考数学考前最后一卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A3.3861
2、08B0.3386109C33.86107D3.3861092下列汽车标志中,不是轴对称图形的是( )ABCD3全球芯片制造已经进入10纳米到7纳米器件的量产时代中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米数据0.000000007用科学记数法表示为()A0.7108B7108C7109D710104如图,将ABC沿着DE剪成一个小三角形ADE和一个四边形DECB,若DEBC,四边形DECB各边的长度如图所示,则剪出的小三角形ADE应是()ABCD5如图,正方形ABCD中,AB=6,G是BC的中点将ABG沿AG对折至AFG,延长GF
3、交DC于点E,则DE的长是 ( )A1B1.5C2D2.56在下面的四个几何体中,左视图与主视图不相同的几何体是()ABCD7如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,则DE:EC=( )A2:5B2:3C3:5D3:28如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(3,1)、C(0,1),若将ABC绕点C沿顺时针方向旋转90后得到A1B1C,则点B对应点B1的坐标是()A(3,1)B(2,2)C(1,3)D(3,0)9如图,ABC中,AB=AC=15,AD平分BAC,点E为AC的中点,连接DE,若CDE的周长为21,则BC的长为( )A16B14C1
4、2D610下列计算正确的是( )Ax2+x2=x4 Bx8x2=x4 Cx2x3=x6 D(-x)2-x2=011如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D1112如图,将一副三角板如此摆放,使得BO和CD平行,则AOD的度数为()A10B15C20D25二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,AB是O的直径,BD,CD分别是过O上点B,C的切线,且BDC110连接AC,则A的度数是_14将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_15如图,直线l1l2l3,等边ABC的顶点B、C分别在直线l2、
5、l3上,若边BC与直线l3的夹角1=25,则边AB与直线l1的夹角2=_16如图,平行于x轴的直线AC分别交抛物线(x0)与(x0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则=_17一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_18如图,将量角器和含30角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是_.三、解答题:(本大题
6、共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,AB为O的直径,点E在O上,C为的中点,过点C作直线CDAE于D,连接AC、BC(1)试判断直线CD与O的位置关系,并说明理由;(2)若AD=2,AC=,求AB的长20(6分)解不等式组并在数轴上表示解集21(6分)如图,已知ABC=90,AB=BC直线l与以BC为直径的圆O相切于点C点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D如果BE=15,CE=9,求EF的长;证明:CDFBAF;CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说
7、明你的理由22(8分)先化简再求值:(a),其中a2cos30+1,btan4523(8分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(3,0)、B(1,0)(1)求平移后的抛物线的表达式(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形BOD相似?若存在,求点M坐标;若不存在,说明理由24(10分)我国古代数学著作增删算法统宗记载“绳索量竿”问题:“一条竿子一条索,索
8、比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺求绳索长和竿长25(10分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每
9、件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26(12分)如图,在RtABC中,CDAB于点D,BEAB于点B,BE=CD,连接CE,DE(1)求证:四边形CDBE为矩形;(2)若AC=2,求DE的长27(12分)综合与探究如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD,BD设点M运动的时间为t(t0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)直接写出点D的坐标(
10、用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:数字338 600 000用科学记数法可
11、简洁表示为3.386108故选:A【点睛】本题考查科学记数法表示较大的数2、C【解析】根据轴对称图形的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合3、C【解析】本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a(1|a|10且n为整数),因此0.000000007用科学记数法法可表示为7,故选C.【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.4、C【解析】利用相似三角形的性质即可判
12、断【详解】设ADx,AEy,DEBC,ADEABC,x9,y12,故选:C【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、C【解析】连接AE,根据翻折变换的性质和正方形的性质可证RtAFERtADE,在直角ECG中,根据勾股定理求出DE的长.【详解】连接AE,AB=AD=AF,D=AFE=90,由折叠的性质得:RtABGRtAFG,在AFE和ADE中,AE=AE,AD=AF,D=AFE,RtAFERtADE,EF=DE,设DE=FE=x,则CG=3,EC=6x.在直角ECG中,根据勾股定理,得:(6x)2+9=(x+3)2,解得x=2.
13、则DE=2.【点睛】熟练掌握翻折变换、正方形的性质、全等三角形的判定与性质是本题的解题关键.6、B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.7、B【解析】四边形ABCD是平行四边形,ABCDEAB=DEF,AFB
14、=DFEDEFBAF,DE:AB=2:5AB=CD,DE:EC=2:3故选B8、B【解析】作出点A、B绕点C按顺时针方向旋转90后得到的对应点,再顺次连接可得A1B1C,即可得到点B对应点B1的坐标【详解】解:如图所示,A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2)故选:B【点睛】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标9、C【解析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为ABC中位线,故ABC的周长是CDE的周长的两倍,由此可求出BC的值.【详解】A
15、B=AC=15,AD平分BAC,D为BC中点,点E为AC的中点,DE为ABC中位线,DE=AB,ABC的周长是CDE的周长的两倍,由此可求出BC的值.AB+AC+BC=42,BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.10、D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方11、A【解析】分析:根据多边形的内角和公式及外角的特征计算详解:多边形的外
16、角和是360,根据题意得:110(n-2)=3360解得n=1故选A点睛:本题主要考查了多边形内角和公式及外角的特征求多边形的边数,可以转化为方程的问题来解决12、B【解析】根据题意可知,AOB=ABO=45,DOC=30,再根据平行线的性质即可解答【详解】根据题意可知AOB=ABO=45,DOC=30BOCDBOC=DCO=90AOD=BOC-AOB-DOC=90-45-30=15故选B【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等二、填空题:(本大题共6个小题,每小题4分,共24分)13、4【解析】试题分析:连结BC,因为AB是O的直径,所以ACB90,
17、A+ABC90,又因为BD,CD分别是过O上点B,C的切线,BDC440,所以CD=BD,所以BCDDBC4,又ABD90,所以A=DBC4考点:4圆周角定理;4切线的性质;4切线长定理14、【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长则所得到的侧面展开图形面积.考点:勾股定理,圆锥的侧面积公式点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.15、【解析】试题分析:如图:ABC是等边三角形,ABC=60,又直线l1l2l3,1=25,1=3=254=60-25=35,2=4=35考点:1平行线的性质;2等边三角形的性质
18、16、5- 【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解设点C的坐标为(1,),则点B的坐标为(,),点D的坐标为(1,1),点E的坐标为(,1),则AB=,DE=1,则=5考点:二次函数的性质17、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:共有9种等可能的结果,两次摸出的球都是红球的由4种情况,两次摸出的球都是红球的概率是,故答案为.【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.18、60.【解析】首先设半圆的圆心为O,连接OE,
19、OA,由题意易得AC是线段OB的垂直平分线,即可求得AOCABC60,又由AE是切线,易证得RtAOERtAOC,继而求得AOE的度数,则可求得答案【详解】设半圆的圆心为O,连接OE,OA,CD2OC2BC,OCBC,ACB90,即ACOB,OABA,AOCABC,BAC30,AOCABC60,AE是切线,AEO90,AEOACO90,在RtAOE和RtAOC中,RtAOERtAOC(HL),AOEAOC60,EOD180AOEAOC60,点E所对应的量角器上的刻度数是60,故答案为:60.【点睛】本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,
20、注意掌握数形结合思想的应用三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析(2)3【解析】(1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;(2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.【详解】相切,连接,为的中点,直线与相切;方法:连接,是的切线,为的中点,为的直径,方法:,易得,【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.20、x0,不等式组的解集表示在数轴上见解析.【
21、解析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解不等式2x+10,得:x,解不等式,得:x0,则不等式组的解集为x0,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”21、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且【解析】(1)由直线l与以BC为直径的圆O相切于点C,即可得BCE=90,BFC=CFE=90,则可证得CEFBEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)由FCD+FBC=90,AB
22、F+FBC=90,根据同角的余角相等,即可得ABF=FCD,同理可得AFB=CFD,则可证得CDFBAF;由CDFBAF与CEFBCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC= CD=CE,然后在RtBCE中,求得tanCBE的值,即可求得CBE的度数,则可得F在O的下半圆上,且.【详解】(1)解:直线l与以BC为直径的圆O相切于点CBCE=90,又BC为直径,BFC=CFE=90,FEC=CEB,CEFBEC,BE=15,CE=9,即:,解得:EF= ;(2)证明:FCD+FBC=90,ABF+FBC=90,ABF=FCD,同理
23、:AFB=CFD,CDFBAF;CDFBAF,又FCE=CBF,BFC=CFE=90,CEFBCF,又AB=BC,CE=CD;(3)解:CE=CD,BC=CD=CE,在RtBCE中,tanCBE=,CBE=30,故 为60,F在直径BC下方的圆弧上,且【点睛】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识此题综合性很强,解题的关键是方程思想与数形结合思想的应用22、;【解析】先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a和b的值,代入计算可得【详解】原式(),当a2cos30+12+1+1,btan451时,原式【点睛】本题主要考
24、查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值23、(1)y=x2+2x3;(2)点P坐标为(1,2);(3)点M坐标为(1,3)或(1,2)【解析】(1)设平移后抛物线的表达式为y=a(x+3)(x-1)由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C坐标,连接BC,与对称轴交点即为所求点P,再求得直线BC解析式,联立方程组求解可得;(3)先求得
25、点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到EDO为等腰三角直角三角形,从而可得到MDO=BOD=135,故此当或时,以M、O、D为顶点的三角形与BOD相似由比例式可求得MD的长,于是可求得点M的坐标【详解】(1)设平移后抛物线的表达式为y=a(x+3)(x1),由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,平移后抛物线的二次项系数与原抛物线的二次项系数相同,平移后抛物线的二次项系数为1,即a=1,平移后抛物线的表达式为y=(x+3)(x1),整理得:y=x2+2x3;(2)y=x2+2x3=(x+1)24,抛物线对称轴为直线x=1,与y轴的
26、交点C(0,3),则点C关于直线x=1的对称点C(2,3),如图1,连接B,C,与直线x=1的交点即为所求点P,由B(1,0),C(2,3)可得直线BC解析式为y=x1,则,解得,所以点P坐标为(1,2);(3)如图2,由得,即D(1,1),则DE=OD=1,DOE为等腰直角三角形,DOE=ODE=45,BOD=135,OD=,BO=1,BD=,BOD=135,点M只能在点D上方,BOD=ODM=135,当或时,以M、O、D为顶点的三角形BOD相似,若,则,解得DM=2,此时点M坐标为(1,3);若,则,解得DM=1,此时点M坐标为(1,2);综上,点M坐标为(1,3)或(1,2)【点睛】本题
27、主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得ODM=BOD=135是解题的关键24、绳索长为20尺,竿长为15尺.【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论【详解】设绳索长、竿长分别为尺,尺,依题意得:解得:,.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键25、(1)A种纪念品需要100元,购
28、进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元【解析】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,2分解方程组得:,购进一件A种纪念品需要100元,购进一件B种纪念品需要50元4分;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100x)个,6分解得:50x53,7分x 为正整数,共有4种进货方案8分;(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件10分总利润=5020+5030=2500(元)当购进A种纪念
29、品50件,B种纪念品50件时,可获最大利润,最大利润是2500元12分26、 (1)见解析;(2)1【解析】分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.详解:(1)证明: CDAB于点D,BEAB于点B, CDBE又 BE=CD, 四边形CDBE为平行四边形 又, 四边形CDBE为矩形 (2)解: 四边形CDBE为矩形, DE=BC 在RtABC中,CDAB,可得 , 在RtABC中,AC=2, DE=BC=1点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.27、(1)A(3,0),y=x+;(2)D(t3+,t3
30、),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0t3时,当点M在OB上运动时,即3t4时,进行讨论可求P点坐标【详解】(1)当y=0时,=0,解得x1=1,x2=3,点A在点B的左侧,A(3,0),B(1,0),由解析
31、式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk,故直线l的表达式为y=x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3t,MCMD,过点D作x轴的垂线垂足为N,DMN+CMO=90,CMO+MCO=90,MCO=DMN,在MCO与DMN中,MCODMN,MN=OC=,DN=OM=3t,D(t3+,t3);同理,当点M在OB上运动时,如图,OM=t3,MCODMN,MN=OC=,ON=t3+,DN=OM=t3,D(t3+,t3)综上得,D(t3+,t3)将D点坐标代入直线解析式得t=62,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最
32、小,M在AB上运动,当CMAB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0t3时,tanCBO=,CBO=60,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=3t,AN=t+,NB=4t,tanNBO=,=,解得t=3,经检验t=3是此方程的解,过点P作x轴的垂线交于点Q,易知PQBDNB,BQ=BN=4t=1,PQ=,OQ=2,P(2,);同理,当点M在OB上运动时,即3t4时,BDP是等边三角形,DBP=BDP=60,BD=BP,NBD=60,DN=t3,NB=t3+1=t4+,tanNBD=, =,解得t=3,经检验t=3是此方程的解,t=3(不符合题意,舍)故P(2,)【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度