《2023届内蒙古自治区呼伦贝尔市满洲里市十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届内蒙古自治区呼伦贝尔市满洲里市十校联考最后数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的
2、对应点分别为点A、B.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A B C D 2如图,右侧立体图形的俯视图是( )A B C D3等腰三角形底角与顶角之间的函数关系是()A正比例函数B一次函数C反比例函数D二次函数4某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )A50.560.5 分B60.570.5 分C70.580.5 分D80.590.5 分5如图,以AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在AOB内部交于点E,过
3、点E作射线OE,连接CD则下列说法错误的是A射线OE是AOB的平分线BCOD是等腰三角形CC、D两点关于OE所在直线对称DO、E两点关于CD所在直线对称6如图所示:有理数在数轴上的对应点,则下列式子中错误的是( )ABCD7一元二次方程mx2+mx0有两个相等实数根,则m的值为()A0B0或2C2D28函数y自变量x的取值范围是( )Ax1Bx1且x3Cx3D1x39我国古代数学著作增删算法统宗记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺设绳索长x尺,
4、竿长y尺,则符合题意的方程组是()ABCD10已知等边三角形的内切圆半径,外接圆半径和高的比是()A1:2:B2:3:4C1:2D1:2:311如图,ABC内接于O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于( )A3:1B4:1C5:2D7:212如图,在ABC中,C=90,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,MPQ的面积大小变化情况是( )A一直增大B一直减小C先减小后增大D先增大后减小二、填空题
5、:(本大题共6个小题,每小题4分,共24分)13如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90得到线段OB,则点B所在图象的函数表达式为_14使有意义的的取值范围是_15用换元法解方程时,如果设,那么原方程化成以为“元”的方程是_16甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_(填“甲”或“乙”)17如图,在平面直角坐标系中,直线y3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_18如图,RtABC中,B
6、AC=90,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知AB是O的直径,CD与O相切于C,BECO(1)求证:BC是ABE的平分线;(2)若DC=8,O的半径OA=6,求CE的长20(6分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示)求羽毛球飞
7、行的路线所在的抛物线的表达式及飞行的最高高度21(6分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨千米)甲库乙库甲库乙库A库20151212B库2520108若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):从甲库运往B库粮食 吨;从乙库运往A库粮食 吨;从乙库运往B库粮食 吨;(2)写出将甲、乙两库粮食运
8、往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?22(8分)直线y1kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D(1)求直线AB的解析式;(2)根据图象写出不等式kx+b0的解集;(3)若点P是x轴上一动点,当COD与ADP相似时,求点P的坐标23(8分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;以点
9、B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 24(10分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:收集数据:30608150401101301469010060811201407081102010081整理数据:课外阅读平均时间x(min)0x4040x8080x120120x160等级DCBA人数3a8b分析数据:平均数中位数众数80mn请根据以上提供的信息,解答下列问题:(1)填空:a,b;m,n;(2)已知该校学生500人,若每
10、人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?25(10分)如图,将连续的奇数1,3,5,7按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示(1)计算:若十字框的中间数为17,则a+b+c+d=_(2)发现:移动十字框,比较a+b+c+d与中间的数猜想:十字框中a、b、c、d的和是中间的数的_;(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;(4)应用
11、:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由26(12分)如图,轮船从点A处出发,先航行至位于点A的南偏西15且点A相距100km的点B处,再航行至位于点A的南偏东75且与点B相距200km的点C处(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向(参考数据:)27(12分)已知AB是O的直径,PB是O的切线,C是O上的点,ACOP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f(1)求证:PC是O的切线;(2)设OP=AC,求CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围参考答
12、案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】分析:过A作ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA=3,然后根据平移规律即可求解详解:过A作ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1-(-1)=3,曲线段AB扫过的面积为9(图中的阴影部分),矩形ACD A的面积等于9,ACAA=3AA=9,AA=3,新函数的图是将函数y=(x-2)2+
13、1的图象沿y轴向上平移3个单位长度得到的,新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1故选D点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA的长度是解题关键2、A【解析】试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图3、B【解析】根据一次函数的定义,可得答案【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=x+90,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.4、C【解析】分
14、析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,据此可得详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,所以中位数落在70.580.5分故选C点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数5、D【
15、解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE在EOC与EOD中,OC=OD,CE=DE,OE=OE,EOCEOD(SSS)AOE=BOE,即射线OE是AOB的平分线,正确,不符合题意B、根据作图得到OC=OD,COD是等腰三角形,正确,不符合题意C、根据作图得到OC=OD,又射线OE平分AOB,OE是CD的垂直平分线C、D两点关于OE所在直线对称,正确,不符合题意D、根据作图不能得出CD平分OE,CD不是OE的平分线,O、E两点关于CD所在直线不对称,错误,符合题意故选D6、C【解析】从数轴上可以看出a、b都是负数,且ab,由此逐项分析得出结论即可【详解】由数轴可知:
16、ab0,A、两数相乘,同号得正,ab0是正确的;B、同号相加,取相同的符号,a+b0是正确的;C、ab0,故选项是错误的;D、a-b=a+(-b)取a的符号,a-b0是正确的故选:C【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.7、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值【详解】一元二次方程mx1+mx0有两个相等实数根,m14m()m1+1m0,解得:m0或m1,经检验m0不合题意,则m1故选C【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实
17、数根;根的判别式的值小于0,方程没有实数根8、B【解析】由题意得,x-10且x-30,x1且x3.故选B.9、A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组【详解】设索长为x尺,竿子长为y尺,根据题意得:故选A【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键10、D【解析】试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;在直角OCD中,DOC=60,则OD:OC=1:2,因而OD:OC:AD=1:2:1,所以内切圆半径,外接圆半径和高的比
18、是1:2:1故选D考点:正多边形和圆11、A【解析】利用垂径定理的推论得出DOAB,AF=BF,进而得出DF的长和DEFCEA,再利用相似三角形的性质求出即可【详解】连接DO,交AB于点F,D是的中点,DOAB,AF=BF,AB=8,AF=BF=4,FO是ABC的中位线,ACDO,BC为直径,AB=8,AC=6,BC=10,FO=AC=1,DO=5,DF=5-1=2,ACDO,DEFCEA,=1故选:A【点睛】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出DEFCEA是解题关键12、C【解析】如图所示,连接CM,M是AB的中点,SACM=SBCM=SABC,开始时,SMP
19、Q=SACM=SABC;由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,SMPQ=SABC;结束时,SMPQ=SBCM=SABCMPQ的面积大小变化情况是:先减小后增大故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】点A是反比例函数的图象上的一个动点,设A(m,n),过A作ACx轴于C,过B作BDx轴于D,AC=n,OC=m,ACO=ADO=90,AOB=90,CAO+AOC=AOC+BOD=90,CAO=BOD,在ACO与ODB中,ACO=ODB,CAO=BOD,AO=BO,ACOODB,AC=OD=n,CO=BD=m,
20、B(n,m),mn=2,n(m)=2,点B所在图象的函数表达式为,故答案为:14、【解析】根据二次根式的被开方数为非负数求解即可.【详解】由题意可得:,解得:.所以答案为.【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.15、y-【解析】分析:根据换元法,可得答案详解:=1时,如果设=y,那么原方程化成以y为“元”的方程是y=1故答案为y=1点睛:本题考查了换元法解分式方程,把换元为y是解题的关键16、甲【解析】乙所得环数的平均数为:=5,S2=+=+=16.4,甲的方差乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定
21、.17、1【解析】作DHx轴于H,如图,当y=0时,-3x+3=0,解得x=1,则A(1,0),当x=0时,y=-3x+3=3,则B(0,3),四边形ABCD为正方形,AB=AD,BAD=90,BAO+DAH=90,而BAO+ABO=90,ABO=DAH,在ABO和DAH中 ABODAH,AH=OB=3,DH=OA=1,D点坐标为(1,1),顶点D恰好落在双曲线y= 上,a=11=1故答案是:1.18、【解析】【分析】如图,作A关于BC的对称点A,连接AA,交BC于F,过A作AEAC于E,交BC于D,则AD=AD,此时AD+DE的值最小,就是AE的长,根据相似三角形对应边的比可得结论【详解】如
22、图,作A关于BC的对称点A,连接AA,交BC于F,过A作AEAC于E,交BC于D,则AD=AD,此时AD+DE的值最小,就是AE的长;RtABC中,BAC=90,AB=3,AC=6,BC=9,SABC=ABAC=BCAF,36=9AF,AF=2,AA=2AF=4,AFD=DEC=90,ADF=CDE,A=C,AEA=BAC=90,AEABAC,AE=,即AD+DE的最小值是,故答案为【点睛】本题考查轴对称最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过
23、程或演算步骤19、(1)证明见解析;(2)4.1【解析】试题分析:(1)由BECO,推出OCB=CBE,由OC=OB,推出OCB=OBC,可得CBE=CBO;(2)在RtCDO中,求出OD,由OCBE,可得,由此即可解决问题;试题解析:(1)证明:DE是切线,OCDE,BECO,OCB=CBE,OC=OB,OCB=OBC,CBE=CBO,BC平分ABE(2)在RtCDO中,DC=1,OC=0A=6,OD=10,OCBE,EC=4.1考点:切线的性质20、米.【解析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴
24、为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a0),则据题意得:,解得:,羽毛球飞行的路线所在的抛物线的表达式为:y=x2+x+1,y=(x4)2+,飞行的最高高度为:米【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.21、(1)(100x);(1x);(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元【解析】分析:()根据题意解答即可; ()弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”详解:()设从甲库运
25、往A库粮食x吨; 从甲库运往B库粮食(100x)吨; 从乙库运往A库粮食(1x)吨; 从乙库运往B库粮食(20+x)吨; 故答案为(100x);(1x);(20+x) ()依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100x)吨,乙库运往A库(1x)吨,乙库运到B库(20+x)吨 则,解得:0x1 从甲库运往A库粮食x吨时,总运费为: y=1220x+1025(100x)+1215(1x)+820120(100x) =30x+39000; 从乙库运往A库粮食(1x)吨,0x1,此时100x0,y=30x+39000(0x1) 300,y随x的增大而减小,当x=1时,y取最小值,最小值是2
26、答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”22、 (1) yx+6;(2) 0x2或x4;(3) 点P的坐标为(2,0)或(3,0).【解析】(1)将点坐标代入双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;(2)根据点坐标和图象即可得出结论;(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论【详解】解:(1)点和点在反比例函数的图象上,解得,即把
27、两点代入中得 ,解得:,所以直线的解析式为:;(2)由图象可得,当时,的解集为或(3)由(1)得直线的解析式为,当时,y6,当时,点坐标为 .设P点坐标为,由题可以,点在点左侧,则由可得当时,解得,故点P坐标为当时,解得,即点P的坐标为因此,点P的坐标为或时,与相似【点睛】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键23、(1)画图见解析,(2,-2);(2)画图见解析,(1,0); 【解析】(1)将ABC向下平移4个单位长度得到的A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出A2B2C2,
28、使A2B2C2与ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可【详解】(1)如图所示,画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键24、(1)a5,b4;m81,n81;(2)300人;(3)16本【解析】(1)根据统计表收集数据可求a,b,再根据中位数、众数的定义可求m,n;(2)达标的学生人数
29、总人数达标率,依此即可求解;(3)本题需先求出阅读课外书的总时间,再除以平均阅读一本课外书的时间即可得出结果【详解】解:(1)由统计表收集数据可知a5,b4,m81,n81;(2)(人)答:估计达标的学生有300人;(3)805226016(本)答:估计该校学生每人一年(按52周计算)平均阅读16本课外书【点睛】本题主要考查统计表以及中位数,众数,估计达标人数等,能够从统计表中获取有效信息是解题的关键.25、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.【解析】(1)直接相加即得到答案; (2)根据(1)猜想a+b+c+d=4x; (3)用x表示a、b
30、、c、d,相加后即等于4x; (4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1【详解】(1)5+15+19+29=68,故答案为68;(2)根据(1)猜想a+b+c+d=4x,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,a+b+c+d=x-12+x-2+x+2+x+12=4x,猜想正确;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,M的值不能等于1【点睛】本题考查了一元一次方程的应用当解得方程的解后,要观察是否满足题目和实际要求再进行取舍26、(1)173;(2)点C位于点A的
31、南偏东75方向【解析】试题分析:(1)作辅助线,过点A作ADBC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向试题解析:解:(1)如答图,过点A作ADBC于点D由图得,ABC=7510=60在RtABD中,ABC=60,AB=100,BD=50,AD=50CD=BCBD=20050=1在RtACD中,由勾股定理得:AC=(km)答:点C与点A的距离约为173km(2)在ABC中,AB2+AC2=1002+(100)2=40000,BC2=2002=40000,AB2+AC2=BC2. BAC=90
32、.CAF=BACBAF=9015=75答:点C位于点A的南偏东75方向考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理27、(1)详见解析;(2);(3)【解析】(1)连接OC,根据等腰三角形的性质得到A=OCA,由平行线的性质得到A=BOP,ACO=COP,等量代换得到COP=BOP,由切线的性质得到OBP=90,根据全等三角形的性质即可得到结论;(2)过O作ODAC于D,根据相似三角形的性质得到CDOP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC=12,当M与A重合时,得到d
33、+f=12,当M与B重合时,得到d+f=9,于是得到结论【详解】(1)连接OC,OA=OC,A=OCA,ACOP,A=BOP,ACO=COP,COP=BOP,PB是O的切线,AB是O的直径,OBP=90,在POC与POB中,COPBOP,OCP=OBP=90,PC是O的切线;(2)过O作ODAC于D,ODC=OCP=90,CD=AC,DCO=COP,ODCPCO,CDOP=OC2,OP=AC,AC=OP,CD=OP,OPOP=OC2,sinCPO=;(3)连接BC,AB是O的直径,ACBC,AC=9,AB=1,BC=12,当CMAB时,d=AM,f=BM,d+f=AM+BM=1,当M与B重合时,d=9,f=0,d+f=9,d+f的取值范围是:9d+f1【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键