《2023届内蒙古自治区呼伦贝尔市满洲里市重点中学中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届内蒙古自治区呼伦贝尔市满洲里市重点中学中考猜题数学试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1关于x的一元二次方程(a1)x2+x+a210的一个根为0,则a值为()A1B1C1D02如图,矩形ABCD中,AB4,BC3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1S2为( )ABCD63若=1,则符合条件的m有()A1个B2个C3个D4个4如图,ABED,CD=BF,若ABCEDF,则还需要补充的条件可以是()AAC=EFBBC=DFCAB=DEDB=E5据国土资源部数据显示,我国是全球“可燃冰”资
3、源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A3.91010B3.9109C0.391011D391096计算:的结果是( )ABCD7在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A众数B中位数C平均数D方差8小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A圆锥形冰淇淋纸套的底面半径为4cmB圆锥形冰淇淋纸套的底面半
4、径为6cmC圆锥形冰淇淋纸套的高为D圆锥形冰淇淋纸套的高为9若A(4,y1),B(3,y2),C(1,y3)为二次函数yx24x+m的图象上的三点,则y1,y2,y3的大小关系是( )Ay1y2y3 By3y2y1 Cy3y1y2 Dy1y3y210如图,ABC中,DEBC,AE2cm,则AC的长是()A2cmB4cmC6cmD8cm11如图,一次函数y1x与二次函数y2ax2bxc图象相交于P、Q两点,则函数yax2(b1)xc的图象可能是( )ABCD122019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是
5、()A32,31B31,32C31,31D32,35二、填空题:(本大题共6个小题,每小题4分,共24分)13若关于x的二次函数yax2+a2的最小值为4,则a的值为_14如图,点A、B、C在圆O上,弦AC与半径OB互相平分,那么AOC度数为_度15如图,点A在反比例函数y=(x0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_16若关于的一元二次方程有实数根,则的取值范围是_17如图,O的直径CD垂直于AB,AOC=48,则BDC=度18计算的结果等于_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19
6、(6分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tan的值测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37,塔底B的仰角为26.6已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度(参考数据sin26.60.45,tan26.60.50;sin370.60,tan370.75)20(6分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的
7、重要部分某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得ACF=45,再向前走300米到点D处,测得BDF=60若直线AB与EF之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)21(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BCx轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PNx轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范
8、围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由22(8分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离)小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_米/分,a=_;并在图中画出y2与x的函数图象(2)求小新路过小华
9、家后,y1与x之间的函数关系式(3)直接写出两人离小华家的距离相等时x的值23(8分)如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=CAC1,求点P的横坐标24(10分) “绿水青山就是金山银山”,北京市民积极参与义务植树活动小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 1 2 3 2 3 2
10、 3 3 4 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:绘制如下的统计图,请补充完整;这30户家庭2018年4月份义务植树数量的平均数是_,众数是_;(2)“互联网全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有_户25(10分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点 (1)如图1,若ABC为直角三角形,求的值;(2)如图1,在(1)
11、的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、Q为顶点的四边形是平行四边形,求点的坐标;(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若=11 求的值26(12分)如图,在平面直角坐标系xOy中,直线与双曲线(x0)交于点求a,k的值;已知直线过点且平行于直线,点P(m,n)(m3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为横、纵坐标都是整数的点叫做整点当时,直接写出区域内的整点个数;若区域内的整点个数不超过8个,结合图象,求m的取值范围27(12分)我们常用的数是十进
12、制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据一元二次方程的定义和一元二次方程的解的定义得出:a10,a210,求出a的值即可【详解】解:把x0代入方程得:a210,解得:a1,(a1)x2+x+a210是关于x的一元二次方程,a10,即a1,a的值是1故选:B【点睛】本题考查了对一元二次
13、方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a10,a210,不要漏掉对一元二次方程二次项系数不为0的考虑2、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值【详解】在矩形ABCD中,AB=4,BC=3,F是AB中点,BF=BG=2,S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,S1-S2=43-=,故选A【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答3、C【解析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【详解】=1 m2-9=0或m
14、-2= 1 即m= 3或m=3,m=1 m有3个值故答案选C.【点睛】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.4、C【解析】根据平行线性质和全等三角形的判定定理逐个分析.【详解】由,得B=D,因为,若,则还需要补充的条件可以是:AB=DE,或E=A, EFD=ACB,故选C【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.5、A【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】39000000000=3.91故选A【点睛】科
15、学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数6、B【解析】根据分式的运算法则即可求出答案【详解】解:原式=故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型7、B【解析】解:11人成绩的中位数是第6名的成绩参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可故选B【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键8、C【解析】根据圆锥的底面周长等于
16、侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高【详解】解:半径为12cm,圆心角为的扇形弧长是:,设圆锥的底面半径是rcm,则,解得:即这个圆锥形冰淇淋纸套的底面半径是2cm圆锥形冰淇淋纸套的高为故选:C【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键9、B【解析】根据函数解析式的特点,其对称轴为x=2,A(4,y1),B(3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可
17、判断y3y2y1.【详解】抛物线y=x24x+m的对称轴为x=2,当x2时,y随着x的增大而减小,因为-4-312,所以y3y2y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.10、C【解析】由可得ADEABC,再根据相似三角形的性质即可求得结果.【详解】ADEABCAC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.11、A【解析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等
18、的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=-0,即可进行判断【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,x=ax2+bx+c,ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,方程ax2+(b-1)x+c=0有两个正实数根函数y=ax2+(b-1)x+c与x轴有两个交点,又-0,a0-=-+0函数y=ax2+(b-1)x+c的对称轴x=-0,A符合条件,故选A12、C【解析】分析:找中位数要把数据按从小到大的
19、顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数所以本题这组数据的中位数是1,众数是1故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据二次函数的性质列出不等式和等式,计算即可【详解】解:关于x的二次函数y=ax1+a1的最小值为4,a1=4,a0,解得,a=1,故答案为1【点睛】本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键14、1【解析】首先根据垂径定理得到OA=A
20、B,结合等边三角形的性质即可求出AOC的度数【详解】解:弦AC与半径OB互相平分,OA=AB,OA=OC,OAB是等边三角形,AOB=60,AOC=1,故答案为1【点睛】本题主要考查了垂径定理的知识,解题的关键是证明OAB是等边三角形,此题难度不大15、1.【解析】根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长【详解】解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AEx轴于点EPAO=OEA=90,POA+AOE=90,AOE+OAE=90,POA=OAE,POAOAE,=,即=,
21、解得:m=1或m=1(舍去),点A的坐标为(1,3),OA=,正方形OABC的面积=OA2=1故答案为1【点睛】本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答16、【解析】由题意可得,=9-4m0,由此求得m的范围【详解】关于x的一元二次方程x2-3x+m=0有实数根,=9-4m0,求得 m.故答案为:【点睛】本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.17、20【解析】解:连接OB,O的直径CD垂直于AB,=,BOC=AOC=40,BDC=AOC=40=2018、【解析】根据
22、完全平方式可求解,完全平方式为【详解】【点睛】此题主要考查二次根式的运算,完全平方式的正确运用是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】过点P作PDOC于D,PEOA于E,则四边形ODPE为矩形,先解RtPBD,得出BD=PDtan26.6;解RtCBD,得出CD=PDtan37;再根据CDBD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在APE中利用三角函数的定义即可求解【详解】解:如图,过点P作PDOC于D,PEOA于E,则四边形ODPE为矩形在RtPBD中,BDP=90,BPD=26.6,BD=PDtanB
23、PD=PDtan26.6在RtCBD中,CDP=90,CPD=37,CD=PDtanCPD=PDtan37CDBD=BC,PDtan37PDtan26.6=10.75PD0.50PD=1,解得PD=2BD=PDtan26.620.50=3OB=220,PE=OD=OBBD=4OE=PD=2,AE=OEOA=2200=520、215.6米【解析】过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点,根据RtACM和三角函数求出CM、DN,然后根据即可求出A、B两点间的距离.【详解】解:过A点做EF的垂线,交EF于M点,过B点做EF的垂线,交EF于N点在RtACM中,AM=CM=20
24、0米,又CD=300米,所以米,在RtBDN中,BDF=60,BN=200米米,米即A,B两点之间的距离约为215.6米【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.21、(1);(2) (0t3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式(2)用t表示P、M、N 的坐标,由等式得到函数关系式(3)由平行四边形对边相等的性质得到等式,求出t再讨论邻边是否相等【详解】解:(1)x=0时,y=1,点A
25、的坐标为:(0,1),BCx轴,垂足为点C(3,0),点B的横坐标为3,当x=3时,y=,点B的坐标为(3,),设直线AB的函数关系式为y=kx+b, ,解得,则直线AB的函数关系式(2)当x=t时,y=t+1,点M的坐标为(t,t+1),当x=t时,点N的坐标为 (0t3);(3)若四边形BCMN为平行四边形,则有MN=BC,解得t1=1,t2=2,当t=1或2时,四边形BCMN为平行四边形,当t=1时,MP=,PC=2,MC=MN,此时四边形BCMN为菱形,当t=2时,MP=2,PC=1,MC=MN,此时四边形BCMN不是菱形【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形
26、的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用22、(1)60;960;图见解析;(2)y1=60x240(4x20);(3)两人离小华家的距离相等时,x的值为2.4或12.【解析】(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;(2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.【详解】(1)由图
27、可知,小新离小华家240米,用4分钟到达,则速度为2404=60米/分,小新按此速度再走16分钟到达书店,则a=1660=960米,小华到书店的时间为96040=24分钟,则y2与x的函数图象为:故小新的速度为60米/分,a=960;(2)当4x20时,设所求函数关系式为y1=kx+b(k0),将点(4,0),(20,960)代入得:,解得:,y1=60x240(4x20时)(3)由图可知,小新到小华家之前的函数关系式为:y=2406x,当两人分别在小华家两侧时,若两人到小华家距离相同,则2406x=40x,解得:x=2.4;当小新经过小华家并追上小华时,两人到小华家距离相同,则60x240=
28、40x,解得:x=12;故两人离小华家的距离相等时,x的值为2.4或12.23、 (1)yx2x4(2)点M的坐标为(2,4)(3)或【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM(m2)212. 当m2时,四边形OAMC面积最大,此时阴影部分面积最小; (3) 抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.先求AC4,CDC1D,AD
29、43;设点P ,过P作PQ垂直于x轴,垂足为Q. 证PAQC1AD,得,即,解得解得n,或n,或n4(舍去).【详解】(1)抛物线的解析式为y (x4)(x2)x2x4.(2)连接OM,设点M的坐标为. 由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM 4m 4 m24m8(m2)212.当m2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,4)(3)抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.OAOC,AOC90,CDC190,AC4,CDC1D
30、,AD43,设点P ,过P作PQ垂直于x轴,垂足为Q.PABCAC1,AQPADC1,PAQC1AD,即 ,化简得 (82n),即3n26n2482n,或3n26n24(82n),解得n,或n,或n4(舍去),点P的横坐标为或.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.24、 (1) 3.4棵、3棵;(2)1.【解析】(1)由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得【详解】解:(1)由已知数据知3棵的有12人
31、、4棵的有8人,补全图形如下:这30户家庭2018年4月份义务植树数量的平均数是(棵),众数为3棵,故答案为:3.4棵、3棵;(2)估计该小区采用这种形式的家庭有户,故答案为:1【点睛】此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.25、 (1) ;(2) 和;(3) 【解析】(1)设,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;(3)过点作DH轴于点,由:,可得:设,可得 点坐标为,可得设点坐标
32、为.可证,利用相似性质列出方程整理可得到 ,将代入抛物线上,可得,联立解方程组,即可解答.【详解】解:设,则是方程的两根,已知抛物线与轴交于点在中:,在中:,为直角三角形,由题意可知,即,,解得:,又,由可知:,令则,以为边,以点、Q为顶点的四边形是四边形时,设抛物线的对称轴为 ,l与交于点,过点作l,垂足为点,即四边形为平行四边形,又l轴,=,点的横坐标为,即点坐标为当以为边,以点、Q为顶点的四边形是四边形时,设抛物线的对称轴为 ,l与交于点,过点作l,垂足为点,即四边形为平行四边形,又l轴,=,点的横坐标为,即点坐标为符合条件的点坐标为和 过点作DH轴于点,:, :设,则点坐标为,点在抛物
33、线上,点坐标为,由(1)知,即,又在抛物线上,,将代入得:,解得(舍去),把代入得:【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.26、(1),;(2) 3, .【解析】(1)将代入可求出a,将A点坐标代入可求出k;(2)根据题意画出函数图像,可直接写出区域内的整点个数;求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.【详解】解:(1)将代入得a=4将代入,得(2)区域内的整点个数是3直线是过点且平行于直线直线的表达式为当时,即线段PM上有整点 【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.27、1.【解析】分析:利用新定义得到101011=125+024+123+022+121+120,然后根据乘方的定义进行计算详解:101011=125+024+123+022+121+120=1,所以二进制中的数101011等于十进制中的1点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方