《2023届嘉兴市秀洲区中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届嘉兴市秀洲区中考数学考前最后一卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列基本几何体中,三视图都是相同图形的是()ABCD2下列计算正确的是()Aa6a2=a3B(2)1=2C(3x2)2x3=6x6D(3)0=13在2014年5月崇左市教育局举行
2、的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的( )A众数B中位数C平均数D方差4的算术平方根为( )ABCD5小明解方程的过程如下,他的解答过程中从第()步开始出现错误解:去分母,得1(x2)1去括号,得1x+21合并同类项,得x+31移项,得x2系数化为1,得x2ABCD6在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180,所得抛物线的解析式是( )ABCD7拒绝“餐桌浪费”,刻不容缓节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一
3、年“”这个数据用科学记数法表示为( )A B C D.8下列计算正确的是()A(8)8=0B3+=3C(3b)2=9b2Da6a2=a39下列各式中,正确的是()A(xy)=xyB(2)1=CD10如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上若AB=6,AD=9,则五边形ABMND的周长为()A28B26C25D2211如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD12二次函数y=-x2-4x+5的最大值是( )A-7B5C0D9二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在边
4、长为9的正三角形ABC中,BD=3,ADE=60,则AE的长为14有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_15如图,已知P是正方形ABCD对角线BD上一点,且BPBC,则ACP度数是_度16一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_17二次函数的图象如图,若一元二次方程有实数根,则 的最大值为_18如图,已知正八边形ABCDEFGH内部ABE的面积为6cm1,则正八边形ABCDEFGH面积为_cm1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、
5、证明过程或演算步骤19(6分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A非常了解;B比较了解;C基本了解;D不了解根据调查统计结果,绘制了不完整的三种统计图表对雾霾了解程度的统计表:对雾霾的了解程度百分比A非常了解5%B比较了解mC基本了解45%D不了解n请结合统计图表,回答下列问题(1)本次参与调查的学生共有 人,m= ,n= ;(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是 度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态
6、度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球若摸出的两个球上的数字和为奇数,则小明去;否则小刚去请用树状图或列表法说明这个游戏规则是否公平20(6分)如图,点AF、CD在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,A=D,AF=DC(1)求证:四边形BCEF是平行四边形,(2)若ABC=90,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形21(6分)计算:+-2+6tan3022(8分)如图,已知A=B,AE=B
7、E,点D在AC边上,1=2,AE与BD相交于点O求证:EC=ED23(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_,图中m的值是_;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数24(10分)如图所示,抛物线yx2+bx+c经过A、B两点,A、B两点的坐标分别为(1,0)、(0,3)求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交
8、点,点D为y轴上一点,且DCDE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,请你直接写出所有满足条件的点P的坐标25(10分)已知抛物线经过点,把抛物线与线段围成的封闭图形记作 (1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围26(12分)如图,ABC中,点D在AB上,ACD=ABC,若AD=2,AB=6,求AC的长27
9、(12分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同 .参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据主视图、左视图、俯视图的定义,可得答案【详解】球的三视图都是圆,故选C【点睛】本题考查了简单几何体的三视图,熟记特殊几何体的三视图是解题关键2、D【解析】解:Aa6a2=a4,故A错误;B(2)1=,故B错误;C(3x2)2x3=6x
10、5,故C错;D(3)0=1,故D正确故选D3、B【解析】解:11人成绩的中位数是第6名的成绩参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可故选B【点睛】本题考查统计量的选择,掌握中位数的意义是本题的解题关键4、B【解析】分析:先求得的值,再继续求所求数的算术平方根即可详解:=2,而2的算术平方根是,的算术平方根是,故选B点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误5、A【解析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题【详解】=1,去分母,得1-(x-2)=x,故错误,故选A【点睛
11、】本题考查解分式方程,解答本题的关键是明确解分式方程的方法6、B【解析】把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可【详解】解:y=x2+2x+3=(x+1)2+2,原抛物线的顶点坐标为(-1,2),令x=0,则y=3,抛物线与y轴的交点坐标为(0,3),抛物线绕与y轴的交点旋转180,所得抛物线的顶点坐标为(1,4),所得抛物线的解析式为:y=-x2+2x+3或y=-(x-1)2+4故选:B【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便7、C【解析】用科
12、学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】32400000=3.24107元故选C【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键8、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=;选项D,原式=.故选C.9、B【解析】A.括号前是负号去括号都变号; B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法【详解】A选项,(xy)=x+y,故A错误;B选项, (2)1=,故B正确;C选项,故C错误;D选项,22,故D
13、错误【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键10、A【解析】如图,运用矩形的性质首先证明CN=3,C=90;运用翻折变换的性质证明BM=MN(设为),运用勾股定理列出关于的方程,求出,即可解决问题【详解】如图,由题意得:BM=MN(设为),CN=DN=3;四边形ABCD为矩形,BC=AD=9,C=90,MC=9-;由勾股定理得:2=(9-)2+32,解得:=5,五边形ABMND的周长=6+5+5+3+9=28,故选A【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股
14、定理等几何知识点来分析、判断、推理或解答11、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积12、D【解析】直接利用配方法得出二次函数的顶点式进而得
15、出答案【详解】y=x24x+5=(x+2)2+9,即二次函数y=x24x+5的最大值是9,故选D【点睛】此题主要考查了二次函数的最值,正确配方是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、7【解析】试题分析:ABC是等边三角形,B=C=60,AB=BCCD=BCBD=93=6,;BAD+ADB=120ADE=60,ADB+EDC=120DAB=EDC又B=C=60,ABDDCE,即14、【解析】分析:直接利用中心对称图形的性质结合概率求法直接得出答案详解:等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,从中随机抽取一张,卡片
16、上的图形是中心对称图形的概率是:故答案为点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键15、22.5【解析】ABCD是正方形,DBC=BCA=45,BP=BC,BCP=BPC=(180-45)=67.5,ACP度数是67.5-45=22.516、120【解析】设扇形的半径为r,圆心角为n利用扇形面积公式求出r,再利用弧长公式求出圆心角即可【详解】设扇形的半径为r,圆心角为n由题意:,r4,n120,故答案为120【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.17、3【解析】试题解析:抛物线的开口向上,顶点纵坐标为-3,a1-
17、=-3,即b2=12a,一元二次方程ax2+bx+m=1有实数根,=b2-4am1,即12a-4am1,即12-4m1,解得m3,m的最大值为3,18、14【解析】取AE中点I,连接IB,则正八边形ABCDEFGH是由8个与IDE全等的三角形构成【详解】解:取AE中点I,连接IB则正八边形ABCDEFGH是由8个与IAB全等的三角形构成I是AE的中点, = =3,则圆内接正八边形ABCDEFGH的面积为:83=14cm1故答案为14【点睛】本题考查正多边形的性质,解答此题的关键是作出辅助线构造出三角形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、解:(1
18、)400;15%;35%(2)1(3)D等级的人数为:40035%=140,补全条形统计图如图所示:(4)列树状图得:从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,小明参加的概率为:P(数字之和为奇数);小刚参加的概率为:P(数字之和为偶数)P(数字之和为奇数)P(数字之和为偶数),游戏规则不公平【解析】(1)根据“基本了解”的人数以及所占比例,可求得总人数:18045%=400人在根据频数、百分比之间的关系,可得m,n的值:(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360的比可得出统计图中D部分扇形所对应的圆心角:36035%=1(3)
19、根据D等级的人数为:40035%=140,据此补全条形统计图(4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平20、(1)见解析(2)当AF=时,四边形BCEF是菱形【解析】(1)由AB=DE,A=D,AF=DC,根据SAS得ABCDEF,即可得BC=EF,且BCEF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BECF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得ABCBGC,由相似三角形的对应边成比例,即可求得AF的值.【详解】(1)证明:AF=DC,AF+FC=DC+FC
20、,即AC=DF.在ABC和DEF中,AC=DF,A=D,AB=DE,ABCDEF(SAS).BC=EF,ACB=DFE,BCEF.四边形BCEF是平行四边形(2)解:连接BE,交CF与点G,四边形BCEF是平行四边形,当BECF时,四边形BCEF是菱形.ABC=90,AB=4,BC=3,AC=.BGC=ABC=90,ACB=BCG,ABCBGC,即.FG=CG,FC=2CG=,AF=ACFC=5.当AF=时,四边形BCEF是菱形21、10 +【解析】根据实数的性质进行化简即可计算.【详解】原式=9-1+2-+6=10-=10 +【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.22、
21、见解析【解析】由1=2,可得BED=AEC,根据利用ASA可判定BEDAEC,然后根据全等三角形的性质即可得证.【详解】解:1=2,1+AED=2+AED,即BED=AEC,在BED和AEC中,BEDAEC(ASA),ED=EC【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键23、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减
22、去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为25
23、0000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.24、(1)y=x22x3;(2)D(0,1);(3)P点坐标(,0)、(,2)、(3,8)、(3,10)【解析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EFy轴于点F,利用勾股定理表示出DC,DE的长再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明CODDFE,得出CDE=90,即CDDE,然后当以C、D、P为顶点的三角形与DOC相似时,根据对应边不同进行分类讨论:当OC与CD是对应边时,有比例
24、式,能求出DP的值,又因为DE=DC,所以过点P作PGy轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PGy轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【详解】解:(1)抛物线y=x2+bx+c经过A(1,0)、B(0,3),解得,故抛物线的函数解析式为y=x22x3;(2)令x22x3=0,解得x1=1,x2=3,则点C的坐标为
25、(3,0),y=x22x3=(x1)24,点E坐标为(1,4),设点D的坐标为(0,m),作EFy轴于点F(如下图),DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,DC=DE,m2+9=m2+8m+16+1,解得m=1,点D的坐标为(0,1);(3)点C(3,0),D(0,1),E(1,4),CO=DF=3,DO=EF=1,根据勾股定理,CD=,在COD和DFE中,CODDFE(SAS),EDF=DCO,又DCO+CDO=90,EDF+CDO=90,CDE=18090=90,CDDE,当OC与CD是对应边时,DOCPDC,即=,解得DP=,过点P作PGy轴于点
26、G,则,即,解得DG=1,PG=,当点P在点D的左边时,OG=DGDO=11=0,所以点P(,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,2);当OC与DP是对应边时,DOCCDP,即=,解得DP=3,过点P作PGy轴于点G,则,即,解得DG=9,PG=3,当点P在点D的左边时,OG=DGOD=91=8,所以,点P的坐标是(3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,满足条件的点P共有4个,其坐标分别为(,0)、(,2)、(3,8)、(3,
27、10)考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.25、(1);(2)-2或-1;(3)-1n1或1n3.【解析】(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得: 解得: 此抛物线的解析式 ;(2)设直线AB的解析式为y=kx+b,依题意得: 解得: 直线AB的解析式为y=-x.点P的横坐标为m,且在抛物线上,点P的坐标为(m, )轴,且点Q有线段AB上,点Q的坐标为(m,-m) 当PQ=A
28、P时,如图,APQ=90,轴,解得,m=-2或m=1(舍去) 当AQ=AP时,如图,过点A作ACPQ于C,为等腰直角三角形,2AC=PQ即m=1(舍去)或m=-1.综上所述,当为等腰直角三角形时,求的值是-2惑-1.;(3)如图,当n1时,依题意可知C,D的横坐标相同,CE=2(1-n)点E的坐标为(n,n-2)当点E恰好在抛物线上时,解得,n=-1.此时n的取值范围-1n1时,依题可知点E的坐标为(2-n,-n)当点E在抛物线上时, 解得,n=3或n=1.n1.n=3.此时n的取值范围1n3.综上所述,n的取值范围为-1n1或1n3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.26、【解析】试题分析:可证明ACDABC,则,即得出AC2=ADAB,从而得出AC的长试题解析:ACD=ABC,A=A, ACDABC ,AD=2,AB=6,AC=考点:相似三角形的判定与性质27、甲、乙获胜的机会不相同.【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.甲、乙获胜的机会不相同.考点:可能性大小的判断点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.