2023届吉林省重点中学中考数学模拟预测题含解析.doc

上传人:茅**** 文档编号:87790862 上传时间:2023-04-17 格式:DOC 页数:21 大小:883KB
返回 下载 相关 举报
2023届吉林省重点中学中考数学模拟预测题含解析.doc_第1页
第1页 / 共21页
2023届吉林省重点中学中考数学模拟预测题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2023届吉林省重点中学中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2023届吉林省重点中学中考数学模拟预测题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,在矩形ABCD中,E是AD边的中点,BEAC,垂

2、足为点F,连接DF,分析下列四个结论:AEFCAB;CF=2AF;DF=DC;tanCAD=其中正确的结论有()A4个B3个C2个D1个2如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( )ABCD3下列手机手势解锁图案中,是轴对称图形的是( )ABCD4为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指( )A80B被抽取的80名初三学生C被抽取的80名初三学生的体重D该校初三学生的体重5有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道

3、这15位同学的()A平均数B中位数C众数D方差6对于不为零的两个实数a,b,如果规定:ab,那么函数y2x的图象大致是()ABCD7下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角D等腰三角形两底角相等8下列运算中,正确的是 ( )Ax2+5x2=6x4Bx3CD9点M(1,2)关于y轴对称点的坐标为()A(1,2)B(1,2)C(1,2)D(2,1)10如图,四边形ABCD中,AB=CD,ADBC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )ABCD3二、填空题(本大题共6个小题,每小题3分,

4、共18分)11如图,已知O1与O2相交于A、B两点,延长连心线O1O2交O2于点P,联结PA、PB,若APB=60,AP=6,那么O2的半径等于_12如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_13计算的结果等于_.14正多边形的一个外角是60,边长是2,则这个正多边形的面积为_ .15如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_16为迎接文明城市的验收工作,某居委会组织两个检

5、查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_三、解答题(共8题,共72分)17(8分)如图,在O中,AB为直径,OCAB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED(1)求证:DE是O的切线;(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径18(8分)如图,点A,B,C都在抛物线y=ax22amx+am2+2m5(其中a0)上,ABx轴,ABC=135,且AB=1(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);(2)求A

6、BC的面积(用含a的代数式表示);(3)若ABC的面积为2,当2m5x2m2时,y的最大值为2,求m的值19(8分)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22x1x2=8,求m的值20(8分)如图,在平面直角坐标系中,O为坐标原点,ABO的边AB垂直于x轴,垂足为点B,反比例函数y(x0)的图象经过AO的中点C,交AB于点D,且AD1设点A的坐标为(4,4)则点C的坐标为 ;若点D的坐标为(4,n)求反比例函数y的表达式;求经过C,D两点的直线所对应的函数解析式;在(2)的条件

7、下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求OEF面积的最大值21(8分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶已知BC=80千米,A=45,B=30开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:1.41,1.73)22(10分)如图,菱形ABCD中,已知BAD=120,EGF=60, EGF的顶点G在菱形

8、对角线AC上运动,角的两边分别交边BC、CD于E、F(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当2时,求EC的长度23(12分)抛物线yx2+bx+c经过点A、B、C,已知A(1,0),C(0,3)求抛物线的解析式;如图1,抛物线顶点为E,EFx轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若MNC90,请指出实数

9、m的变化范围,并说明理由如图2,将抛物线平移,使其顶点E与原点O重合,直线ykx+2(k0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标24某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店

10、每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】正确只要证明EAC=ACB,ABC=AFE=90即可;正确由ADBC,推出AEFCBF,推出=,由AE=AD=BC,推出=,即CF=2AF;正确只要证明DM垂直平分CF,即可证明;正确设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N四边形ABCD是矩形,ADBC,ABC=90,AD=BC,EAC=ACBBEAC于点F,ABC=A

11、FE=90,AEFCAB,故正确;ADBC,AEFCBF,=AE=AD=BC,=,CF=2AF,故正确;DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NFBEAC于点F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,tanCAD=故正确故选A【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键解题时注意:相似三角形的对应边成比例2、B【解析】如图所示,过O点作a的平行线d,根据平行线的性质得

12、到23,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,ad,由两直线平行同位角相等得到2350,木条c绕O点与直线d重合时,与直线a平行,旋转角1290.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.3、D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定

13、义,熟练掌握定义是本题解题的关键.4、C【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象从而找出总体、个体再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量【详解】样本是被抽取的80名初三学生的体重,故选C【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象总体、个体与样本的考查对象是相同的,所不同的是范围的大小样本容量是样本中包含的个体的数目,不能带单位5、B【解析】由中

14、位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数故选B【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用6、C【解析】先根据规定得出函数y2x的解析式,再利用一次函数与反比例函数的图象性质即可求解【详解】由

15、题意,可得当2x,即x2时,y2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2x,即x2时,y,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0x2,故B错误故选:C【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y2x的解析式是解题的关键7、D【解析】解:A、如果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D8、C【解析】分析:直接利用积的乘方运算法则及合并同类

16、项和同底数幂的乘除运算法则分别分析得出结果.详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;D.,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.9、A【解析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.10、B【解析】四边形AECD是平行四边形,AE=CD,AB=BE=CD=3,AB=BE=AE,ABE是等边三角形,B=60,的弧长=.故选B.二

17、、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】由题意得出ABP为等边三角形,在RtACO2中,AO2=即可.【详解】由题意易知:PO1AB,APB=60ABP为等边三角形,AC=BC=3圆心角AO2O1=60 在RtACO2中,AO2=2.故答案为2.【点睛】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.12、【解析】如图,有5种不同取法;故概率为 .13、a3【解析】试题解析:x5x2=x3.考点:同底数幂的除法.14、6【解析】多边形的外角和等于360,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解【详解】正多边形的边数是:36060

18、=6.正六边形的边长为2cm,由于正六边形可分成六个全等的等边三角形,且等边三角形的边长与正六边形的边长相等,所以正六边形的面积.故答案是:.【点睛】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.15、12【解析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出线段长度解答【详解】根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=

19、3,所以的面积是=12.【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型16、【解析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可【详解】解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为故答案为:【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两

20、步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验用到的知识点为:概率所求情况数与总情况数之比三、解答题(共8题,共72分)17、(1)答案见解析;(2)AB=1BE;(1)1【解析】试题分析:(1)先判断出OCF+CFO=90,再判断出OCF=ODF,即可得出结论;(2)先判断出BDE=A,进而得出EBDEDA,得出AE=2DE,DE=2BE,即可得出结论;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x,进而得出OE=1+2x,最后用勾股定理即可得出结论试题解析:(1)证明:连结OD,如图EF=ED,EFD=EDFEFD=CFO,CFO=EDFOCOF,OCF+C

21、FO=90OC=OD,OCF=ODF,ODC+EDF=90,即ODE=90,ODDE点D在O上,DE是O的切线;(2)线段AB、BE之间的数量关系为:AB=1BE证明如下:AB为O直径,ADB=90,ADO=BDEOA=OD,ADO=A,BDE=A,而BED=DEA,EBDEDA,RtABD中,tanA=,=,AE=2DE,DE=2BE,AE=4BE,AB=1BE;(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=xOF=1,OE=1+2x在RtODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,x=(舍)或x=2,圆O的半径为1点睛:本题是圆的综合题,主要考查了切线的判

22、定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出EBDEDA是解答本题的关键18、(1)(m,2m2);(2)SABC =;(3)m的值为或10+2【解析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由ABx轴且AB1,可得出点B的坐标为(m2,1a2m2),设BDt,则点C的坐标为(m2t,1a2m2t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出SABC的值;(3)由(2)的结论结合SABC2可求出a值,

23、分三种情况考虑:当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;当2m2m2m2,即2m2时,xm时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值综上即可得出结论详解:(1)y=ax22amx+am2+2m2=a(xm)2+2m2,抛物线的顶点坐标为(m,2m2),故答案为(m,2m2);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,ABx轴,且

24、AB=1,点B的坐标为(m+2,1a+2m2),ABC=132,设BD=t,则CD=t,点C的坐标为(m+2+t,1a+2m2t),点C在抛物线y=a(xm)2+2m2上,1a+2m2t=a(2+t)2+2m2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=,SABC=ABCD=;(3)ABC的面积为2,=2,解得:a=,抛物线的解析式为y=(xm)2+2m2分三种情况考虑:当m2m2,即m2时,有(2m2m)2+2m2=2,整理,得:m211m+39=0,解得:m1=7(舍去),m2=7+(舍去);当2m2m2m2,即2m2时,有2m2=2,解得:m=;当m2m2,即m

25、2时,有(2m2m)2+2m2=2,整理,得:m220m+60=0,解得:m3=102(舍去),m1=10+2综上所述:m的值为或10+2点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m2、2m2及m2三种情况考虑19、 (1);(2)m=【解析】(1)根据已知和根的判别式得出=22412m=48m0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=2,x1x2=2m,把x1+xx12+x22x

26、1x2=8变形为(x1+x2)23x1x2=8,代入求出即可【详解】(1)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,=22412m=48m0,解得:即m的取值范围是(2)x1,x2是一元二次方程x2+2x+2m=0的两个根,x1+x2=2,x1x2=2m,x12+x22x1x2=8,(x1+x2)23x1x2=8,(2)232m=8,解得:【点睛】本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键20、 (1)C(2,2);(2)反比例函数解析式为y;直线CD的解析式为yx+1;(1)m1时,SOEF最大,最大值为.【解析】(1

27、)利用中点坐标公式即可得出结论;(2)先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论【详解】(1)点C是OA的中点,A(4,4),O(0,0),C,C(2,2);故答案为(2,2);(2)AD1,D(4,n),A(4,n+1),点C是OA的中点,C(2,),点C,D(4,n)在双曲线上,反比例函数解析式为;由知,n1,C(2,2),D(4,1),设直线CD的解析式为yax+b,直线CD的解析式为yx+1;(1)如图,由(2)知

28、,直线CD的解析式为yx+1,设点E(m,m+1),由(2)知,C(2,2),D(4,1),2m4,EFy轴交双曲线于F,F(m,),EFm+1,SOEF(m+1)m(m2+1m4)(m1)2+,2m4,m1时,SOEF最大,最大值为【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立SOEF与m的函数关系式21、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】(1)过点C作AB的垂线CD,垂足为D,在直角ACD中,解直角三角形求出CD,进而解答即可;(2)在直角CBD中,解直角三角形

29、求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程【详解】解:(1)过点C作AB的垂线CD,垂足为D,ABCD,sin30=,BC=80千米,CD=BCsin30=80(千米),AC=(千米),AC+BC=80+40401.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)cos30=,BC=80(千米),BD=BCcos30=80(千米),tan45=,CD=40(千米),AD=(千米),AB=AD+BD=40+4040+401.73=109.2(千米),汽车从A地到B地比原来少走多少路程为:AC+BCAB=136.4109.2=27

30、.2(千米)答:汽车从A地到B地比原来少走的路程为27.2千米【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线22、(1)证明见解析(2)线段EC,CF与BC的数量关系为:CECFBC.CECFBC(3)【解析】(1)利用包含60角的菱形,证明BAECAF,可求证;(2)由特殊到一般,证明CAECGE,从而可以得到EC、CF与BC的数量关系(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.【详解】解:(1)证明:四边形ABCD是菱形,BAD120,BAC60,BACF60,AB=B

31、C,AB=AC,BAEEACEACCAF60,BAE=CAF,在BAE和CAF中,,BAECAF,BECF,ECCFECBEBC,即ECCFBC; (2)知识探究:线段EC,CF与BC的数量关系为:CECFBC.理由:如图乙,过点A作AEEG,AFGF,分别交BC、CD于E、F类比(1)可得:EC+CF=BC,AEEG,CAECGE,同理可得:,即;CECFBC. 理由如下:过点A作AEEG,AFGF,分别交BC、CD于E、F.类比(1)可得:ECCFBC,AEEG,CAECAE,CECE,同理可得:CFCF,CECFCECF(CECF)BC,即CECFBC; (3)连接BD与AC交于点H,如

32、图所示:在RtABH中,AB8,BAC60,BHABsin608,AHCH=ABcos6084,GH1,CG413,t(t2),由(2)得:CECFBC,CEBC CF8.【点睛】本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形23、(1)yx22x3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,2)【解析】(1)把点A(1,0),C(0,3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CHEF于H,设N的坐标为(1,n),证明RtNC

33、HMNF,可得mn2+3n+1,因为4n0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(x1,y1),设直线HQ表达式为yax+t,用待定系数法和韦达定理可求得ax2x1,t2,即可得出直线QH过定点(0,2)【详解】解:(1)抛物线yx2+bx+c经过点A、C,把点A(1,0),C(0,3)代入,得:,解得,抛物线的解析式为yx22x3;(2)如图,作CHEF于H,yx22x3(x1)24,抛物线的顶点坐标E(1,4),设N的坐标为(1,n),4n0MNC90,CNH+MNF90,又CNH+NCH90,NCHMNF,又NHCMFN90,RtNCHMNF,即解得

34、:mn2+3n+1,当时,m最小值为;当n4时,m有最大值,m的最大值1612+11m的取值范围是(3)设点P(x1,y1),Q(x2,y2),过点P作x轴平行线交抛物线于点H,H(x1,y1),ykx+2,yx2,消去y得,x2kx20,x1+x2k,x1x22,设直线HQ表达式为yax+t,将点Q(x2,y2),H(x1,y1)代入,得,y2y1a(x1+x2),即k(x2x1)ka,ax2x1,( x2x1)x2+t,t2,直线HQ表达式为y( x2x1)x2,当k发生改变时,直线QH过定点,定点坐标为(0,2)【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函

35、数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键24、(1)y=2x+80(20x28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元【解析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润销售量:w(x20)(2x80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y与x的函数关系式为ykxb.把(22,36)与(24,32)代入,得 解得 y2x80(20x28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x20)y150,即(x20)(2x80)150.解得x125,x235(舍去)答:每本纪念册的销售单价是25元(3)由题意,可得w(x20)(2x80)2(x30)2200.售价不低于20元且不高于28元,当x30时,y随x的增大而增大,当x28时,w最大2(2830)2200192(元)答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁