2023届湖南省湘西州重点中学中考数学模拟预测题含解析.doc

上传人:lil****205 文档编号:87838700 上传时间:2023-04-18 格式:DOC 页数:21 大小:1.05MB
返回 下载 相关 举报
2023届湖南省湘西州重点中学中考数学模拟预测题含解析.doc_第1页
第1页 / 共21页
2023届湖南省湘西州重点中学中考数学模拟预测题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2023届湖南省湘西州重点中学中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖南省湘西州重点中学中考数学模拟预测题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABC中,AB=4,BC=6,B=60,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角

2、度后,点B恰好与点C重合,则平移的距离和旋转角的度数分别为( )A4,30B2,60C1,30D3,6022017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为()A3382108元 B3.382108元 C338.2109元 D3.3821011元3方程组的解x、y满足不等式2xy1,则a的取值范围为()AaBaCaDa4剪纸是我国传统的民间艺术,下列剪纸作品中既不是轴对称图形,也不是中心对称图形的是()ABCD5若点A(1+m,1n)与点B(3,2)关于y轴对称,则m+n的值是()

3、A5 B3 C3 D16设点和是反比例函数图象上的两个点,当时,则一次函数的图象不经过的象限是A第一象限B第二象限C第三象限D第四象限7如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A国B厉C害D了8若ABC与DEF相似,相似比为2:3,则这两个三角形的面积比为( )A2:3B3:2C4:9D9:49如图是由四个相同的小正方体堆成的物体,它的正视图是()ABCD10如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A8BC4D11在ABC中,C90,sinA,则tanB等于( )AB

4、CD12下列二次根式中,最简二次根式是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,网格中的四个格点组成菱形ABCD,则tanDBC的值为_ . 14因式分解:_15已知二次函数yax2+bx+c中,函数y与自变量x的部分对应值如表所示:x54321y83010当y3时,x的取值范围是_16已知图中RtABC,B=90,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转 (0 360),得到线段AC,连接DC,当DC/BC时,旋转角度 的值为_,17规定一种新运算“*”:a*bab,则方程x*21*x的解为_18阅读材料:如图,C为线段B

5、D上一动点,分别过点B、D作ABBD,EDBD,连接AC、EC设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1根据以上阅读材料,可构图求出代数式的最小值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角(0180且90),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一

6、点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 (2)若120,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的圆心斜坐标为M(2,2

7、),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 20(6分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点动点C、D分别在直线AB、OB上,将BCD沿着CD折叠,得BCD()如图1,若CDAB,点B恰好落在点A处,求此时点D的坐标;()如图2,若BD=AC,点B恰好落在y轴上,求此时点C的坐标;()若点C的横坐标为2,点B落在x轴上,求点B的坐标(直接写出结果即可)21(6分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB求证:ABE=EAD;若AEB=2ADB,求证:四边形ABCD是菱形22(8分)如图,梯形ABC

8、D中,ADBC,AEBC于E,ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F(1)求证:CD与O相切;(2)若BF=24,OE=5,求tanABC的值23(8分)计算:(1)2018+()2|2 |+4sin60;24(10分)先化简,再求值:,其中x525(10分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上 年龄组x7891011121314151617

9、男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)该市男学生的平均身高从 岁开始增加特别迅速(2)求直线AB所对应的函数表达式(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?26(12分)如图,在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象与反比例函数y(n0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,1),ADx轴,且AD3,tanAOD求该反比例函数和一次函数的

10、解析式;求AOB的面积;点E是x轴上一点,且AOE是等腰三角形,请直接写出所有符合条件的E点的坐标27(12分)解方程:1参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:B=60,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,ABC=60,AB=AB=AC=4,ABC是等边三角形,BC=4,BAC=60,BB=64=2,平移的距离和旋转角的度数分别为:2,60故选B考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定2、D【解析】科学记数法的表示形

11、式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】3382亿=338200000000=3.3821故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、B【解析】方程组两方程相加表示出2xy,代入已知不等式即可求出a的范围【详解】 +得: 解得: 故选:B【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值4、C【解析

12、】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】A、不是中心对称图形,是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既不是中心对称图形,也不是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误,故选C【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180后,能与原图形重合,那么就说这个图形是中心对称图形.5、D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不

13、变,据此求出m、n的值,代入计算可得【详解】点A(1+m,1n)与点B(3,2)关于y轴对称,1+m=3、1n=2,解得:m=2、n=1,所以m+n=21=1,故选D【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.6、A【解析】点和是反比例函数图象上的两个点,当1时,即y随x增大而增大,根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大故k1根据一次函数图象与系数的关系:一次函数的图象有四种情况:当,时,函数的图象经过第一、二、三象限;当,时,函数的图象经过第一、三、

14、四象限;当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限因此,一次函数的,故它的图象经过第二、三、四象限,不经过第一象限故选A7、A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.8、C【解析】由ABC与DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案【详解】ABC与DEF相似,相似比为2:3,这两个三角形的面积比为4:1故选C【点睛】此题考查了相似三角形的性质注意

15、相似三角形的面积比等于相似比的平方9、A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图10、A【解析】【分析】设,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出【详解】轴,B两点纵坐标相同,设,则,故选A【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.11、B【解析】法一,依题意ABC为直角三角形,A+B=90,cosB=,sinB=,tanB

16、=故选B法2,依题意可设a=4,b=3,则c=5,tanb=故选B12、C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A.被开方数含能开得尽方的因数或因式,故A不符合题意,B.被开方数含能开得尽方的因数或因式,故B不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,D.被开方数含分母,故D不符合题意.故选C【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式二、填空题:(本大题共6个小题,每小题4分,共24分)13、3【解析】试题分析:如图,连接A

17、C与BD相交于点O,四边形ABCD是菱形,ACBD,BO=BD,CO=AC,由勾股定理得,AC=,BD=,所以,BO=,CO=,所以,tanDBC=3故答案为3考点:3菱形的性质;3解直角三角形;3网格型14、【解析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解【详解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1故答案为:x(y+1)1【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止15、x4或x1【解析】观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对

18、称性判断出x=1时,y=-3,然后写出y-3时,x的取值范围即可【详解】由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,且x=1时,y=-3,所以,y-3时,x的取值范围为x-4或x1故答案为x-4或x1【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键16、15或255【解析】如下图,设直线DC与AB相交于点E,RtABC中,B=90,AB=BC,DC/BC,AED=ABC=90,ADE=ACB=BAC=45,AB=AC,AE=AD,又AD=AB,AC=AC,AE=AB=AC=AC,C=30,EAC=60,CAC=60-

19、45=15, 即当DCBC时,旋转角=15;同理,当DCBC时,旋转角=180-45-60=255;综上所述,当旋转角=15或255时,DC/BC.故答案为:15或255.17、【解析】根据题中的新定义化简所求方程,求出方程的解即可【详解】根据题意得:x2=1,x=,解得:x,故答案为x.【点睛】此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可18、4【解析】根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题【详解】如图所示:C为线段BD上一动点,分别过点B、D作ABBD,EDBD,连接AC、EC设CD=x,若AB=5,D

20、E=3,BD=12,当A,C,E,在一条直线上,AE最短,ABBD,EDBD,ABDE,ABCEDC,解得:DC=即当x=时,代数式有最小值,此时为:故答案是:4【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)(2,0),(1,),(1,);y=x; y=x,y=x+;(2)半径为4,M(,);1r+1【解析】(1)如图2-1中,作BEOD交OA于E,CFOD交x轴于F求出OE、OF、CF、OD、BE即可解决问题;如图2-2中,作BEOD交OA于E,作PMOD交OA

21、于M利用平行线分线段成比例定理即可解决问题;如图3-3中,作QMOA交OD于M利用平行线分线段成比例定理即可解决问题;(2)如图3中,作MFOA于F,作MNy轴交OA于N解直角三角形即可解决问题;如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、F求出FN=NE=1时,M的半径即可解决问题.【详解】(1)如图21中,作BEOD交OA于E,CFOD交x轴于F,由题意OC=CD=1,OA=BC=2,BD=OE=1,OD=CF=BE=,A(2,0),B(1,),C(1,),故答案为(2,0),(1,),(1,);如图22中,作BEOD交OA于E,作PMOD交OA于M,ODBE,ODP

22、M,BEPM,=,y=x;如图23中,作QMOA交OD于M,则有,y=x+,故答案为y=x,y=x+;(2)如图3中,作MFOA于F,作MNy轴交OA于N,=120,OMy轴,MOA=30,MFOA,OA=4,OF=FA=2,FM=2,OM=2FM=4,MNy轴,MNOM,MN=,ON=2MN=,M(,);如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、FMKx轴,=120,MKO=60,MK=OK=2,MKO是等边三角形,MN=,当FN=1时,MF=1,当EN=1时,ME=+1,观察图象可知当M的半径r的取值范围为1r+1故答案为:1r+1【点睛】本题考查圆综合题、平行线分

23、线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题20、(1)D(0,);(1)C(116,1118);(3)B(1+,0),(1,0).【解析】(1)设OD为x,则BD=AD=3,在RTODA中应用勾股定理即可求解;(1)由题意易证BDCBOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CEAO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=BC,再利用特殊角的三角函数可逐一求

24、解.【详解】()设OD为x,点A(3,0),点B(0,),AO=3,BO=AB=6折叠BD=DA在RtADO中,OA1+OD1=DA19+OD1=(OD)1OD=D(0,)()折叠BDC=CDO=90CDOA且BD=AC,BD=18OD=(18)=18tanABO=,ABC=30,即BAO=60tanABO=,CD=116D(116,1118)()如图:过点C作CEAO于ECEAOOE=1,且AO=3AE=1,CEAO,CAE=60ACE=30且CEAOAC=1,CE=BC=ABACBC=61=4若点B落在A点右边,折叠BC=BC=4,CE=,CEOABE=OB=1+B(1+,0)若点B落在A

25、点左边,折叠BC=BC=4,CE=,CEOABE=OB=1B(1,0)综上所述:B(1+,0),(1,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B点的两种情况是解题关键.21、(1)证明见解析;(2)证明见解析【解析】(1)根据平行四边形的对边互相平行可得ADBC,再根据两直线平行,内错角相等可得AEB=EAD,根据等边对等角可得ABE=AEB,即可得证(2)根据两直线平行,内错角相等可得ADB=DBE,然后求出ABD=ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可【详解】证明:(1)在平行四边形ABCD中,ADBC,AEB

26、=EADAE=AB,ABE=AEBABE=EAD(2)ADBC,ADB=DBEABE=AEB,AEB=2ADB,ABE=2ADBABD=ABEDBE=2ADBADB=ADBAB=AD又四边形ABCD是平行四边形,四边形ABCD是菱形22、(1)证明见解析;(2)【解析】试题分析:(1)过点O作OGDC,垂足为G先证明OAD=90,从而得到OAD=OGD=90,然后利用AAS可证明ADOGDO,则OA=OG=r,则DC是O的切线;(2)连接OF,依据垂径定理可知BE=EF=1,在RtOEF中,依据勾股定理可知求得OF=13,然后可得到AE的长,最后在RtABE中,利用锐角三角函数的定义求解即可试

27、题解析:(1)证明:过点O作OGDC,垂足为GADBC,AEBC于E,OAADOAD=OGD=90在ADO和GDO中,ADOGDOOA=OGDC是O的切线(2)如图所示:连接OFOABC,BE=EF= BF=1在RtOEF中,OE=5,EF=1,OF=,AE=OA+OE=13+5=2tanABC.【点睛】本题主要考查的是切线的判定、垂径定理、勾股定理的应用、锐角三角函数的定义,掌握本题的辅助线的作法是解题的关键23、1.【解析】分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果详解:原式=1+4

28、-(2-2)+4,=1+4-2+2+2,=1点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算24、,-【解析】分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.详解: 当时,原式.点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.25、(1)11;(2)y3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右【解析】(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3

29、)先设函数表达式,选取两个点带入求值,把带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从 11 岁开始增加特别迅速,故答案为:11;(2)设直线AB所对应的函数表达式图象经过点则,解得即直线AB所对应的函数表达式:(3)设直线CD所对应的函数表达式为:,得,即直线CD所对应的函数表达式为:把代入得即该市18岁男生年龄组的平均身高大约是174cm左右【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.26、(1)y,yx+2;(2)6;(3)当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【解析】(1)利用待定系数法

30、,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC4,即可得出AOB的面积436;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可【详解】(1)如图,在RtOAD中,ADO90,tanAOD,AD3,OD2,A(2,3),把A(2,3)代入y,考点:n3(2)6,所以反比例函数解析式为:y,把B(m,1)代入y,得:m6,把A(2,3),B(6,1)分别代入ykx+b,得:,解得:,所以一次函数解析式为:yx+2;(2)当y0时, x+20,解得:x4,则C(4,0),所以;(3)当OE3OE2AO,即E2(,0),E3(,0);当OAAE1时

31、,得到OE12OD4,即E1(4,0);当AE4OE4时,由A(2,3),O(0,0),得到直线AO解析式为yx,中点坐标为(1,1.5),令y0,得到y,即E4(,0),综上,当点E(4,0)或(,0)或(,0)或(,0)时,AOE是等腰三角形【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键27、【解析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】原方程变形为,方程两边同乘以(2x1),得2x51(2x1),解得 检验:把代入(2x1),(2x1)0,是原方程的解,原方程的【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁