《2023届安徽省利辛县重点达标名校中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省利辛县重点达标名校中考数学模拟预测题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1已知点M、N在以AB为直径的圆O上,MON=x,MAN= y, 则点(x,y)一定在( )A抛物线上B过原点的直线上C双曲线上D以上说法都不对2下列各组数中,互为相反数的是()A1与(1)2B(1)2与1C2与D2与|2|3如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()ABCD4
2、如图1,在ABC中,D、E分别是AB、AC的中点,将ADE沿线段DE向下折叠,得到图1下列关于图1的四个结论中,不一定成立的是()A点A落在BC边的中点BB+1+C=180CDBA是等腰三角形DDEBC5已知直线与直线的交点在第一象限,则的取值范围是( )ABCD6如图,矩形ABCD中,AB=8,BC=1点E在边AB上,点F在边CD上,点G、H在对角线AC上若四边形EGFH是菱形,则AE的长是( )A2B3C5D67如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:3a+b0;-1a-;对于任意实数m
3、,a+bam2+bm总成立;关于x的方程ax2+bx+c=n-1有两个不相等的实数根其中结论正确的个数为( )A1个 B2个 C3个 D4个8设x1,x2是一元二次方程x22x50的两根,则x12+x22的值为()A6B8C14D169如图,已知E,B,F,C四点在一条直线上,添加以下条件之一,仍不能证明的是ABCD10按如图所示的方法折纸,下面结论正确的个数( )290;1AEC;ABEECF;BAE1A1 个B2 个C1 个D4 个二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将BCP沿着直线CP翻折,
4、若点B落在边AD上的点E处,且EP/AB,则AB的长等于_12若反比例函数y的图象与一次函数yx+k的图象有一个交点为(m,4),则这个反比例函数的表达式为_13 如图,已知,要使,还需添加一个条件,则可以添加的条件是 (只写一个即可,不需要添加辅助线)14如图,A、B是双曲线y=上的两点,过A点作ACx轴,交OB于D点,垂足为C若D为OB的中点,ADO的面积为3,则k的值为_15钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为_16如图,直线mn,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若1=
5、30,则2=_三、解答题(共8题,共72分)17(8分)如图,一次函数ykxb的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OAOB(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y2xn于点M,交反比例函数的图象于点N,若NMNP,求n的值18(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”比赛项目为:A唐诗;B宋词;C论语;D三字经比赛形式分“单人组”和“双人组”小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:
6、同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明19(8分)如图,RtABC中,C=90,O是RtABC的外接圆,过点C作O的切线交BA的延长线于点E,BDCE于点D,连接DO交BC于点M.(1)求证:BC平分DBA;(2)若,求的值20(8分)已知抛物线经过点,把抛物线与线段围成的封闭图形记作 (1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直
7、线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围21(8分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图所示,S与x的函数关系图象如图所示:(1)图中的a=_,b=_(2)求快车在行驶的过程中S关于x的函数关系式(3)直接写出两车出发多长时间相距200km?22(10分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的
8、件数相同求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?23(12分)如图,在ABC中,ACB=90,O是AB上一点,以OA为半径的O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F(1)求证:AE=AF;(2)若DE=3,sinBDE=,求AC的长24今年 3 月 12 日植树节期间, 学校预购进 A、B 两种树苗,若购进 A种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元
9、(1)求购进 A、B 两种树苗的单价;(2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由圆周角定理得出MON与MAN的关系,从而得出x与y的关系式,进而可得出答案.【详解】MON与MAN分别是弧MN所对的圆心角与圆周角,MAN=MON, ,点(x,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.2、A【解析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(1)21,1与1 互为相反数,正
10、确;B、(1)21,故错误;C、2与互为倒数,故错误;D、2|2|,故错误;故选:A【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.3、B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形故选B考点:简单组合体的三视图4、A【解析】根据折叠的性质明确对应关系,易得A=1,DE是ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确【详解】根据题意可知DE是三角形ABC的中位线,所以DEBC;B+1+C=180;BD=AD,DBA是等腰三角形故只有A错,BACA故选A【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质还
11、涉及到翻折变换以及中位线定理的运用(1)三角形的外角等于与它不相邻的两个内角和(1)三角形的内角和是180度求角的度数常常要用到“三角形的内角和是180这一隐含的条件通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力解答此类题最好动手操作5、C【解析】根据题意画出图形,利用数形结合,即可得出答案【详解】根据题意,画出图形,如图:当时,两条直线无交点;当时,两条直线的交点在第一象限故选:C【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键6、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EFAC;利用”AAS或ASA”易证FMCEMA,根
12、据全等三角形的性质可得AM=MC;在RtABC中,由勾股定理求得AC=,且tanBAC=;在RtAME中,AM=AC=,tanBAC=可得EM=;在RtAME中,由勾股定理求得AE=2故答案选C考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数7、D【解析】利用抛物线开口方向得到a0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对进行判断;利用2c3和c=-3a可对进行判断;利用二次函数的性质可对进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对进行判断【详解】抛物线开口向下,a0,而抛物线的对称轴为直线x=-=1,即b=-2a,3a+b=3a-2a=a0
13、,所以正确;2c3,而c=-3a,2-3a3,-1a-,所以正确;抛物线的顶点坐标(1,n),x=1时,二次函数值有最大值n,a+b+cam2+bm+c,即a+bam2+bm,所以正确;抛物线的顶点坐标(1,n),抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以正确故选D【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛
14、物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点8、C【解析】根据根与系数的关系得到x1+x2=2,x1x2=-5,再变形x12+x22得到(x1+x2)2-2x1x2,然后利用代入计算即可【详解】一元二次方程x2-2x-5=0的两根是x1、x2,x1+x2=2,x1x2=-5,x12+x22=(x1+x2)2-2x1x2=22-2(-5)=1故选C【点睛】考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程的两根为x1
15、,x2,则x1+x2=- ,x1x2= 9、B【解析】由EB=CF,可得出EF=BC,又有A=D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明ABCDEF,那么添加的条件与原来的条件可形成SSA,就不能证明ABCDEF了【详解】添加,根据AAS能证明,故A选项不符合题意B.添加与原条件满足SSA,不能证明,故B选项符合题意;C.添加,可得,根据AAS能证明,故C选项不符合题意;D.添加,可得,根据AAS能证明,故D选项不符合题意,故选B【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三
16、角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角10、C【解析】1+1=2,1+1+2=180,1+1=2=90,故正确;1+1=2,1AEC.故不正确;1+1=90,1+BAE=90,1=BAE,又BC,ABEECF.故,正确;故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】设CD=AB=a,利用勾股定理可得到RtCDE中,DE2=CE2-CD2=1-2a2,RtDEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据DEPDAB,即可得到,即,可得,即可得到AB的长等于【详解】如图,设CD=AB=a,则B
17、C2=BD2-CD2=1-a2,由折叠可得,CE=BC,BP=EP,CE2=1-a2,RtCDE中,DE2=CE2-CD2=1-2a2,PEAB,A=90,PED=90,RtDEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,PE=a2,PEAB,DEPDAB,即,即a2+a-1=0,解得(舍去),AB的长等于AB=.故答案为.12、y【解析】把交点坐标代入两个解析式组成方程组,解方程组求得k,即可求得反比例函数的解析式【详解】解:反比例函数y的图象与一次函数yx+k的图象有一个交点为(m,4),解得k5,反比例函数的表达式为y,故答案为y【点睛】本题考查了反比例函数与一次函
18、数的交点问题,根据图象上点的坐标特征得出方程组是解题的关键13、可添ABD=CBD或AD=CD【解析】由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添ABD=CBD或AD=CD,ABD=CBD,在ABD和CBD中,ABDCBD(SAS);AD=CD,在ABD和CBD中,ABDCBD(SSS),故答案为ABD=CBD或AD=CD【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS14、
19、1【解析】过点B作BEx轴于点E,根据D为OB的中点可知CD是OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=,再由ADO的面积为1求出k的值即可得出结论解:如图所示,过点B作BEx轴于点E,D为OB的中点,CD是OBE的中位线,即CD=BE设A(x,),则B(2x,),CD=,AD=,ADO的面积为1,ADOC=3,()x=3,解得k=1,故答案为115、【解析】试题分析:将4400000用科学记数法表示为:4.41故答案为4.41考点:科学记数法表示较大的数16、75【解析】试题解析:直线l1l2, 故答案为三、解答题(共8题,共72分)17、20(1)y2x5
20、, y=;(2)n4或n1【解析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案【详解】解:(1)点A的坐标为(4,3),OA=5,OA=OB,OB=5,点B在y轴的负半轴上,点B的坐标为(0,-5),将点A(4,3)代入反比例函数解析式y=中,反比例函数解析式为y=,将点A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N的坐标为(2
21、,6),NP=NM,点M坐标为(2,0)或(2,12),分别代入y=2x-n可得:n=-4或n=1【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用18、 (1) ;(2).【解析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的
22、概率=19、 (1)证明见解析;(2) 【解析】分析:(1)如下图,连接OC,由已知易得OCDE,结合BDDE可得OCBD,从而可得1=2,结合由OB=OC所得的1=3,即可得到2=3,从而可得BC平分DBA;(2)由OCBD可得EBDEOC和DBMOCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.详解:(1)证明:连结OC,DE与O相切于点C,OCDE.BDDE,OCBD. . 1=2,OB=OC,1=3,2=3,即BC平分DBA. . (2)OCBD,EBDEOC,DBMOCM,. ,设EA=2k,AO=3k,OC=OA=OB=3k
23、.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OCDE结合BDDE得到OCBD是解答第1小题的关键;(2)解答第2小题的关键是由OCBD得到EBDEOC和DBMOCM这样利用相似三角形的性质结合已知条件即可求得所求值了.20、(1);(2)-2或-1;(3)-1n1或1n3.【解析】(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得: 解得: 此抛物线的解析式 ;(2)设直线AB的解析式为y=kx+b,依题意得: 解得: 直线
24、AB的解析式为y=-x.点P的横坐标为m,且在抛物线上,点P的坐标为(m, )轴,且点Q有线段AB上,点Q的坐标为(m,-m) 当PQ=AP时,如图,APQ=90,轴,解得,m=-2或m=1(舍去) 当AQ=AP时,如图,过点A作ACPQ于C,为等腰直角三角形,2AC=PQ即m=1(舍去)或m=-1.综上所述,当为等腰直角三角形时,求的值是-2惑-1.;(3)如图,当n1时,依题意可知C,D的横坐标相同,CE=2(1-n)点E的坐标为(n,n-2)当点E恰好在抛物线上时,解得,n=-1.此时n的取值范围-1n1时,依题可知点E的坐标为(2-n,-n)当点E在抛物线上时, 解得,n=3或n=1.
25、n1.n=3.此时n的取值范围1n3.综上所述,n的取值范围为-1n1或1n3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.21、(1)a=6, b=;(2) ;(3)或5h【解析】(1)根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,指出此时a的值即可,求得a的值后求出两车相遇时的时间即为b的值;(2)根据函数的图像可以得到A、B、C、D的点的坐标,利用待定系数法求得函数的解析式即可.(3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x的值.【详解】解:(1)由s与x之间的
26、函数的图像可知:当位于C点时,两车之间的距离增加变缓,由此可以得到a=6,快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600,;(2)从函数的图象上可以得到A、B、C、D点的坐标分别为:(0,600)、(,0)、(6,360)、(10,600),设线段AB所在直线解析式为:S=kx+b, 解得:k=-160,b=600,设线段BC所在的直线的解析式为:S=kx+b, 解得:k=160,b=-600,设直线CD的解析式为:S=kx+b, 解得:k=60,b=0 (3)当两车相遇前相距200km,此时:S=-160x+600=200,解得:,当两车相遇后相距200km,此时:
27、S=160x-600=200,解得:x=5,或5时两车相距200千米【点睛】本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围.22、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案【解析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解【
28、详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,x=15,经检验x=15是原方程的解40x=1甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,解得20y2因为y是整数,甲种玩具的件数少于乙种玩具的件数,y取20,21,22,23,共有4种方案考点:分式方程的应用;一元一次不等式组的应用23、(1)证明见解析;(2)1【解析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可【详解】(1)连接OD,OD=OE,ODE=OED直线BC为O的切线,ODBCODB=90ACB=90,ODACODE
29、=FOED=FAE=AF;(2)连接AD,AE是O的直径,ADE=90,AE=AF,DF=DE=3,ACB=90,DAF+F=90,CDF+F=90,DAF=CDF=BDE,在RtADF中,=sinDAF=sinBDE=,AF=3DF=9,在RtCDF中,=sinCDF=sinBDE=,CF=DF=1,AC=AFCF=1【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.24、(1)购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵(2)A 种 树苗至少需购进 1 棵【解析】(
30、1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论【详解】设购进 A 种树苗的单价为 x 元/棵,购进 B 种树苗的单价为 y 元/棵,根据题意得: , 解得: 答:购进 A 种树苗的单价为 200 元/棵,购进 B 种树苗的单价为 300 元/棵(2)设需购进 A 种树苗 a 棵,则购进 B 种树苗(30a)棵,根据题意得:200a+300(30a)8000,解得:a1A种树苗至少需购进 1 棵【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式