《安徽省六安市金寨县达标名校2023届中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《安徽省六安市金寨县达标名校2023届中考数学模拟预测题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABC中,AB=4,BC=6,B=60,将ABC沿射线BC的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,则平移的距离和旋转角的度数分别为( )A4
2、,30B2,60C1,30D3,602下列博物院的标识中不是轴对称图形的是( )ABCD3如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()ABCD4如图,在ABC中,C=90,B=10,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是AD是BAC的平分线;ADC=60;点D在AB的中垂线上;SDAC:SABC=1:1A1B2C1D45下面计算中,正确的是()A(a+b)2=a2+b2
3、B3a+4a=7a2C(ab)3=ab3 Da2a5=a76对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A60,的补角120,B90,的补角90,C100,的补角80,D两个角互为邻补角7小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图根据图中信息,下列说法:这栋居民楼共有居民140人每周使用手机支付次数为2835次的人数最多有的人每周使用手机支付的次数在3542次每周使用手机支付不超过21次的有15人其中正确的是( )ABCD8如图1,点P从ABC的顶点A出发,沿ABC匀速运动,到点C停止运动点P运动时,线段AP的长度y与运动时间x的函数关系如
4、图2所示,其中D为曲线部分的最低点,则ABC的面积是()A10B12C20D249如右图,ABC内接于O,若OAB=28则C的大小为( )A62B56C60D2810从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()ABCD11二次函数(2x1)22的顶点的坐标是()A(1,2)B(1,2)C(,2)D(,2)12如图,在已知的 ABC中,按以下步骤作图:分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;作直线MN交AB于点D,连接CD,则下列结论正确的是()ACD+DB=ABBCD+AD=ABCCD+AC=ABDA
5、D+AC=AB二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:CE=CF;AEB=75;BE+DF=EF;S正方形ABCD=其中正确的序号是 (把你认为正确的都填上)14已知x+y8,xy2,则x2y+xy2_15如图,平行四边形ABCD中,AB=AC=4,ABAC,O是对角线的交点,若O过A、C两点,则图中阴影部分的面积之和为_16九章算术是中国传统数学最重要的著作,奠定了中国传统数学的基本框架它的代数成就主要包括开方术、正负术和方程术其中,方程术是九章算术最高的数学成就九章算术中记载:“
6、今有牛五、羊二,直金十两;牛二、羊五,直金八两问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为_17某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带_kg的行李18如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) 某居民小区一处圆柱形的输水
7、管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面(1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB8 cm,水面最深地方的高度为2 cm,求这个圆形截面的半径20(6分)(1)计算:14+sin61+()2()1(2)解不等式组,并把它的解集在数轴上表示出来21(6分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N(1)求点D的坐标.(2)求点M的坐标(用含a的代数
8、式表示).(3)当点N在第一象限,且OMB=ONA时,求a的值22(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老
9、师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.23(8分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a2n+1,b2n2+2n,c2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作九章算术中,书中提到:当a(m2n2),bmn,c(m2+n2)(m、n
10、为正整数,mn时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n5,求该直角三角形另两边的长24(10分)(1)计算:|3|+(2 018)02sin 30+()1(2)先化简,再求值:(x1)(1),其中x为方程x2+3x+2=0的根25(10分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH(1)求证:AEHCGF;(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由26(12分)我市某企业接到一批产品的
11、生产任务,按要求必须在14天内完成已知每件产品的出厂价为60元工人甲第x天生产的产品数量为y件,y与x满足如下关系:工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?27(12分)如图,在ABC 中,AB=AC,CD是ACB的平分线,DEBC,交AC于点 E求证:DE=CE 若CDE=35,求A 的度数 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:B=60,将ABC沿射线BC
12、的方向平移,得到ABC,再将ABC绕点A逆时针旋转一定角度后,点B恰好与点C重合,ABC=60,AB=AB=AC=4,ABC是等边三角形,BC=4,BAC=60,BB=64=2,平移的距离和旋转角的度数分别为:2,60故选B考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定2、A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A【点睛】此题考查轴对称图形的概念,解题的关键在于利
13、用轴对称图形的概念判断选项正误3、D【解析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为SABCS扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,B,E是半圆弧的三等分点,EOAEOBBOD60,BADEBA30,BEAD, 的长为 ,解得:R4,ABADcos30 ,BCAB,ACBC6,SABCBCAC6,BOE和ABE同底等高,BOE和ABE面积相等,图中阴影部分的面积为:SABCS扇形BOE故选:D【点睛】本题主要考查弧长
14、公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.4、D【解析】根据作图的过程可知,AD是BAC的平分线.故正确.如图,在ABC中,C=90,B=10,CAB=60.又AD是BAC的平分线,1=2=CAB=10,1=902=60,即ADC=60.故正确.1=B=10,AD=BD.点D在AB的中垂线上.故正确.如图,在直角ACD中,2=10,CD=AD.BC=CD+BD=AD+AD=AD,SDAC=ACCD=ACAD.SABC=ACBC=ACAD=ACAD.SDAC:SABC故正确.综上所述,正确的结论是:,共有4个故选D.5、D【解析】直接利用完全平方公式以及合并同类项法则、积的
15、乘方运算法则分别化简得出答案【详解】A.(a+b)2=a2+b2+2ab,故此选项错误;B.3a+4a=7a,故此选项错误;C.(ab)3=a3b3,故此选项错误;D.a2a5=a7,正确。故选:D.【点睛】本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.6、C【解析】熟记反证法的步骤,然后进行判断即可解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;A、的补角,符合假命题的结论,故A错误;B、的补角=,符合假命题的结论,故B错误;C、的补角,与假命题结论相反,故C正确;D、由于无法说明两角具体的大小关系,故D错误故选
16、C7、B【解析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:这栋居民楼共有居民3101522302520125人,此结论错误;每周使用手机支付次数为2835次的人数最多,此结论正确;每周使用手机支付的次数在3542次所占比例为,此结论正确;每周使用手机支付不超过21次的有3101528人,此结论错误;故选:B【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据8、B【解析】过点A作AMBC于点M,由题意可
17、知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,BM=3,BC=2BM=6,SABC=12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.9、A【解析】连接OB在OAB中,OA=OB(O的半径),OAB=OBA(等边对等角);又OAB=28,OBA=28;AOB=180-228=124;而C=AOB(同弧所对的圆周角是所对的圆心角的一半),C=62;故选A10、C【解析】左视图就是从物体的左边往右边看小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去
18、的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确故此题选C11、C【解析】试题分析:二次函数(21)2即的顶点坐标为(,2)考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系12、B【解析】作弧后可知MNCB,且CD=DB.【详解】由题意性质可知MN是BC的垂直平分线,则MNCB,且CD=DB,则CD+AD=AB.【点睛】了解中垂线的作图规则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】分析:四边形ABCD是正方形,AB=AD。AEF是等边三角形,AE=AF。在RtABE和RtADF中,
19、AB=AD,AE=AF,RtABERtADF(HL)。BE=DF。BC=DC,BCBE=CDDF。CE=CF。说法正确。CE=CF,ECF是等腰直角三角形。CEF=45。AEF=60,AEB=75。说法正确。如图,连接AC,交EF于G点,ACEF,且AC平分EF。CADDAF,DFFG。BE+DFEF。说法错误。EF=2,CE=CF=。设正方形的边长为a,在RtADF中,解得,。说法正确。综上所述,正确的序号是。14、1【解析】将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值【详解】x+y=8,xy=2,x2y+xy2=xy(x+y)=28=1故答案为:1【点睛】
20、本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式15、1【解析】AOB=COD,S阴影=SAOB四边形ABCD是平行四边形,OA=AC=1=2ABAC,S阴影=SAOB=OAAB=21=1【点睛】本题考查了扇形面积的计算16、【解析】试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.考点:二元一次方程组的应用17、2【解析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得 ,解得, ,则y=3
21、0x-1当y=0时,30x-1=0,解得:x=2故答案为:2【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键18、【解析】分析题意,如图所示,连接BF,由翻折变换可知,BFAE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.AEF是由ABE沿AE折叠得到的,BFAE,BE=EF.BC=6,点E为BC的中点,BE=EC=EF=3
22、根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)详见解析;(2)这个圆形截面的半径是5 cm.【解析】(1)根据尺规作图的步骤和方法做出图即可;(2)先过圆心作半径,交于点,设半径为,得出、的长,在中,根据勾股定理求出这个圆形截面的半径.【详解】(1)如图,作线段AB的垂直平分线l,与弧AB交于点C,作
23、线段AC的垂直平分线l与直线l交于点O,点O即为所求作的圆心(2)如图,过圆心O作半径COAB,交AB于点D,设半径为r,则ADAB4,ODr2,在RtAOD中,r242(r2)2,解得r5,答:这个圆形截面的半径是5 cm.【点睛】此题考查了垂径定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.20、(1)5;(2)2x【解析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可【详解】(
24、1)原式 =5;(2)解不等式得,x2,解不等式得, 所以不等式组的解集是 用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定21、(1)D(2,2);(2);(3)【解析】(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求
25、出交点N的坐标,得到ON的长.过A点作AEOD,可证AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tanOMB=tanONA,得到比例式,代入数值即可求得a的值.【详解】(1)当x=0时,A点的坐标为(0,2)顶点B的坐标为:(1,2-a),对称轴为x= 1,点A与点D关于对称轴对称D点的坐标为:(2,2)(2)设直线BD的解析式为:y=kx+b把B(1,2-a)D(2,2)代入得: ,解得:直线BD的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=M点的坐标为:(3)由D(2,2)可得:直线OD解析式为:y=x设直线AB的解析式为y=m
26、x+n,代入A(0,2)B(1,2-a)可得: 解得:直线AB的解析式为y= -ax+2联立成方程组: ,解得:N点的坐标为:()ON=()过A点作AEOD于E点,则AOE为等腰直角三角形.OA=2OE=AE=,EN=ON-OE=()-=)M,C(1,0), B(1,2-a)MC=,BE=2-aOMB=ONAtanOMB=tanONA,即解得:a=或抛物线开口向下,故a4,不符合题意;则5x1070,解得x12.答:工人甲第12天生产的产品数量为70件(2)由函数图象知,当0x4时,P40,当4x14时,设Pkxb,将(4,40)、(14,50)代入,得解得Px36.当0x4时,W(6040)
27、7.5x150x,W随x的增大而增大,当x4时,W最大600;当4600,当x11时,W取得最大值845元答:第11天时,利润最大,最大利润是845元点睛:本题考查了一次函数的应用、二次函数的应用,解题的关键是理解题意,记住利润=出厂价-成本,学会利用函数的性质解决最值问题27、 (1)见解析;(2) 40.【解析】(1)根据角平分线的性质可得出BCD=ECD,由DEBC可得出EDC=BCD,进而可得出EDC=ECD,再利用等角对等边即可证出DE=CE;(2)由(1)可得出ECD=EDC=35,进而可得出ACB=2ECD=70,再根据等腰三角形的性质结合三角形内角和定理即可求出A的度数【详解】(1)CD是ACB的平分线,BCD=ECDDEBC,EDC=BCD,EDC=ECD,DE=CE(2)ECD=EDC=35,ACB=2ECD=70AB=AC,ABC=ACB=70,A=1807070=40【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线解题的关键是:(1)根据平行线的性质结合角平分线的性质找出EDC=ECD;(2)利用角平分线的性质结合等腰三角形的性质求出ACB=ABC=70