《2023届山东省潍坊市寿光中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省潍坊市寿光中考数学模拟预测题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各
2、多少?设车辆,根据题意,可列出的方程是 ( )ABCD2下列图形中,是正方体表面展开图的是( )ABCD3函数y=中自变量x的取值范围是Ax0Bx4Cx4Dx44许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为()A1915.15108B19.1551010C1.91551011D1.915510125下列几何体中三视图完全相同的是()ABCD6如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,ABG46,则FAE的度数是()A26B44C46D727对于实数x,我们规定x表示不大于x的最大整数,如4=4,=1,
3、2.5=3.现对82进行如下操作:82 =9 =3 =1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A1B2C3D48若x2是关于x的一元二次方程x2axa20的一个根,则a的值为( )A1或4B1或4C1或4D1或49已知O及O外一点P,过点P作出O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:连接OP,作OP的垂直平分线l,交OP于点A;以点A为圆心、OA为半径画弧、交O于点M;作直线PM,则直线PM即为所求(如图1)乙:让直角三角板的一条直角边始终经过点P;调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在O上
4、,记这时直角顶点的位置为点M;作直线PM,则直线PM即为所求(如图2)对于两人的作业,下列说法正确的是( )A甲乙都对B甲乙都不对C甲对,乙不对D甲不对,已对10计算(5)(3)的结果等于()A8 B8 C2 D2二、填空题(本大题共6个小题,每小题3分,共18分)11已知x1,x2是方程x2-3x-1=0的两根,则=_12计算:+=_13如图,P是O的直径AB延长线上一点,PC切O于点C,PC=6,BC:AC=1:2,则AB的长为_14如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有
5、交点,BP的取值范围是_15计算:cos245-tan30sin60=_16某个“清涼小屋”自动售货机出售A、B、C三种饮料A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元则这个“清凉小屋”自动售货
6、机一个工作日的销售收入是_元三、解答题(共8题,共72分)17(8分)已知:如图,在ABC中,ACB=90,以BC为直径的O交AB于点D,E为的中点.求证:ACD=DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长18(8分)先化简,再求值:,其中满足.19(8分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线(1)求该一次函数表达式;(2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围20(8分)如图,ABC三个定点坐标分别为A(1,3),B(1,1),C(3,2)请画出ABC关于y轴对称的A1B1C1;以原点O为位似中心,将A
7、1B1C1放大为原来的2倍,得到A2B2C2,请在第三象限内画出A2B2C2,并求出SA1B1C1:SA2B2C2的值21(8分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且ACx轴.(1)已知A(3,0),B(1,0),AC=OA求抛物线解析式和直线OC的解析式;点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EGx轴于G,连CG,BF,求证
8、:CGBF22(10分)声音在空气中传播的速度y(m/s)是气温x()的一次函数,下表列出了一组不同气温的音速:气温x()05101520音速y(m/s)331334337340343(1)求y与x之间的函数关系式:(2)气温x=23时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?23(12分)如图,AC是O的直径,PA切O于点A,点B是O上的一点,且BAC30,APB60(1)求证:PB是O的切线;(2)若O的半径为2,求弦AB及PA,PB的长24已知2是关于x的方程x22mx+3m0的一个根,且这个方程的两个根恰好是等腰ABC的两条边长,则ABC的周长为_参考答案一、
9、选择题(共10小题,每小题3分,共30分)1、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.2、C【解析】利用正方体及其表面展开图的特点解题【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体故选C【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形
10、3、B【解析】根据二次根式的性质,被开方数大于等于0,列不等式求解【详解】根据题意得:x10,解得x1,则自变量x的取值范围是x1故选B【点睛】本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数4、C【解析】科学记数法的表示形式为的形式,其中为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值1时,是正数;当原数的绝对值1时,是负数【详解】用科学记数法表示1915.5亿应为1.91551011,故选C【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5、A【解析】找到从物体正面、左面和上面看得到的图形全等的
11、几何体即可【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体6、A【解析】先根据正五边形的性质求出EAB的度数,再由平行线的性质即可得出结论【详解】解:图中是正五边形EAB108太阳光线互相平行,ABG46,FAE180ABGEAB1804610826故选A【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出EAB.7、C【解析】分析:x表示不大于x的最大整数,依据题目中提
12、供的操作进行计算即可详解:121对121只需进行3次操作后变为1.故选C点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.8、C【解析】试题解析:x=-2是关于x的一元二次方程的一个根,(-2)2+a(-2)-a2=0,即a2+3a-2=0,整理,得(a+2)(a-1)=0,解得 a1=-2,a2=1即a的值是1或-2故选A点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根9、A【解析】(1)连接OM,OA,连接OP,作OP的垂直平分
13、线l可得OA=MA=AP,进而得到O=AMO,AMP=MPA,所以OMA+AMP=O+MPA=90,得出MP是O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,所以OMP=90,得到MP是O的切线【详解】证明:(1)如图1,连接OM,OA连接OP,作OP的垂直平分线l,交OP于点A,OA=AP以点A为圆心、OA为半径画弧、交O于点M;OA=MA=AP,O=AMO,AMP=MPA,OMA+AMP=O+MPA=90,OMMP,MP是O的切线;(1)如图1直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,OMP=90,MP是
14、O的切线故两位同学的作法都正确故选A【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性10、C【解析】分析:减去一个数,等于加上这个数的相反数 依此计算即可求解详解:(-5)-(-3)=-1故选:C点睛:考查了有理数的减法,方法指引:在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题解析:,是方程的两根,、,= =1故答案为112、1.【解析】利用同分母分式加法法则进行计算,分母不变,分子相加.【详解】解:原式
15、=.【点睛】本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键13、1【解析】PC切O于点C,则PCB=A,P=P,PCBPAC,,BP=PC=3,PC2=PBPA,即36=3PA,PA=12AB=12-3=1故答案是:1.14、1x1【解析】此题需要运用极端原理求解;BP最小时,F、D重合,由折叠的性质知:AF=PF,在RtPFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;【详解】解:如图:当F、D重合时,BP的值最小;根据折叠的性质知:AF=PF=5;在RtPFC中,PF=5,
16、FC=1,则PC=4;BP=xmin=1;当E、B重合时,BP的值最大;由折叠的性质可得BP=AB=1所以BP的取值范围是:1x1故答案为:1x1【点睛】此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键15、0【解析】直接利用特殊角的三角函数值代入进而得出答案【详解】= .故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键16、950【解析】设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,得到工作日期间一天的销售收入为:8x+6x+5x19x元,和周六销售销售收入为:12x+9.6x+7.5x29.
17、1x元,再结合题意得到10.1x(53)503,计算即可得到答案.【详解】解:设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x19x10.1x元,由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在B、C饮料上(B、C一瓶的差价为2元),且是消费者付B饮料的钱,取走的是C饮料
18、;于是有:10.1x(53)503解得:x50工作日期间一天的销售收入为:1950950元,故答案为:950.【点睛】本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.三、解答题(共8题,共72分)17、(1)见解析;(2)PE=4.【解析】(1)根据同角的余角相等得到ACD=B,然后由圆周角定理可得结论;(2)连结OE,根据圆周角定理和等腰三角形的性质证明OECD,然后由POEPCD列出比例式,求解即可.【详解】解:(1)证明:BC是O的直径,BDC=90,BCD+B=90,ACB=90,BCD+ACD=90,ACD=B,DEC=B,ACD=DEC(2)证明:连结OEE为BD弧
19、的中点.DCE=BCEOC=OEBCE=OECDCE=OECOECD POEPCD,PB=BO,DE=2PB=BO=OCPE=4【点睛】本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键18、1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值试题解析:原式= x2x1=0,x2=x+1,则原式=1.19、(1);(2)【解析】(1)由题意可设该一次函数的解析式为:,将点
20、M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;(2)根据直线上的点Q(x,y)在直线的下方可得2x13x+2,解不等式即得结果.【详解】解:(1)一次函数平行于直线,可设该一次函数的解析式为:,直线过点M(4,7),8+b=7,解得b=1,一次函数的解析式为:y=2x1;(2)点Q(x,y)是该一次函数图象上的点,y=2x1,又点Q在直线的下方,如图,2x13.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.20、(1)见解析;(2)图见解析;.【解析】(1)根据网格结构找出点A、B
21、、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答【详解】解:(1)A1B1C1如图所示(2)A2B2C2如图所示A1B1C1放大为原来的2倍得到A2B2C2,A1B1C1A2B2C2,且相似比为SA1B1C1:SA2B2C2=()2=21、 (1)y=x24x3;y=x;t= 或;(2)证明见解析.【解析】(1)把A(3,0),B(1,0)代入二次函数解析式即可求出;由AC=OA知C点
22、坐标为(-3,-3),故可求出直线OC的解析式;由题意得OP=2t,P(2t,0),过Q作QHx轴于H,得OH=HQ=t,可得Q(t,t),直线 PQ为yx2t,过M作MGx轴于G,由,则2PGGH,由,得, 于是,解得,从而求出M(3t,t)或M(),再分情况计算即可; (2) 过F作FHx轴于H,想办法证得tanCAG=tanFBH,即CAG=FBH,即得证.【详解】解:(1)把A(3,0),B(1,0)代入二次函数解析式得解得y=x24x3;由AC=OA知C点坐标为(-3,-3),直线OC的解析式y=x;OP=2t,P(2t,0),过Q作QHx轴于H,QO=,OH=HQ=t, Q(t,t
23、),PQ:yx2t,过M作MGx轴于G,,2PGGH,即, , M(3t,t)或M()当M(3t,t)时:,当M()时:,综上:或(2)设A(m,0)、B(n,0),m、n为方程x2bxc=0的两根,m+n=b,mnc,yx2+(m+n)xmn(xm)(xn),E、F在抛物线上,设、,设EF:ykx+b, , ,令xmAC=,又,tanCAG=,另一方面:过F作FHx轴于H, tanFBH=tanCAG=tanFBH CAG=FBH CGBF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.22、 (1) y=x+331;(2)1724m.
24、【解析】(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.【详解】解:(1)设y=kx+b, k=,y=x+331.(2)当x=23时,y= x23+331=344.85344.8=1724.此人与烟花燃放地相距约1724m.【点睛】此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.23、(1)见解析;(2)2【解析】试题分析:(1)连接OB,证PBOB根据四边形的内角和为360,结合已知条件可得OBP=90得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的
25、性质即可求得结果(1)连接OBOA=OB,OBA=BAC=30 AOB=80-30-30=20 PA切O于点A,OAPA,OAP=90四边形的内角和为360,OBP=360-90-60-20=90 OBPB又点B是O上的一点,PB是O的切线 (2)连接OP,PA、PB是O的切线,PA=PB,OPA=OPB=,APB=30在RtOAP中,OAP=90,OPA=30,OP=2OA=22=1 PA=OP2-OA2=2PA=PB,APB=60,PA=PB=AB=2考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可24、11【解析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论【详解】将x=2代入方程,得:11m+3m=0,解得:m=1当m=1时,原方程为x28x+12=(x2)(x6)=0,解得:x1=2,x2=6,2+2=16,此等腰三角形的三边为6、6、2,此等腰三角形的周长C=6+6+2=11【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质