2023届安徽省合肥庐阳区六校联考中考数学最后一模试卷含解析.doc

上传人:茅**** 文档编号:87789939 上传时间:2023-04-17 格式:DOC 页数:21 大小:1.09MB
返回 下载 相关 举报
2023届安徽省合肥庐阳区六校联考中考数学最后一模试卷含解析.doc_第1页
第1页 / 共21页
2023届安徽省合肥庐阳区六校联考中考数学最后一模试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2023届安徽省合肥庐阳区六校联考中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省合肥庐阳区六校联考中考数学最后一模试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上反比例函数(x0)的图象经过顶点B,则k的值为A12B20C24D322-2的倒数是( )A-2BCD23如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:

2、先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为( )A15mB25mC30mD20m4若,代数式的值是A0BC2D5抛物线经过第一、三、四象限,则抛物线的顶点必在( )A第一象限B第二象限C第三象限D第四象限6如图,将ABC沿着DE剪成一个小三角形ADE和一个四边形DECB,若DEBC,四边形DECB各边的长度如图所示,则剪出的小三角形ADE应是()ABCD7下列汽车标志中,不是轴对称图形的是( )ABCD8如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出

3、线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:该正六边形的边长为1;当t3时,机器人一定位于点O;机器人一定经过点D;机器人一定经过点E;其中正确的有( )ABCD9有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()Aa+b0Bab0CaboDab010已知二次函数yax1+bx+c+1的图象如图所示,顶点为(1,0),下列结论:abc0;b14ac0;a1;ax1+bx+c1的根为x1x11;若点B(,y1)、C(,y1)为函数图象上的两点,则y1y1其中正确的个数是()A1B3C4D5二、填空题

4、(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中,函数y=(k0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC若三角形ABC的面积为3,则点B的坐标为_12计算:|5|=_13已知扇形的圆心角为120,弧长为6,则扇形的面积是_14算术平方根等于本身的实数是_.15如图,ABCD,1=62,FG平分EFD,则2= .16如果反比例函数的图象经过点A(2,y1)与B(3,y2),那么的值等于_.17二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统

5、称“二十四节气”这一时间认知体系被誉为“中国的第五大发明”如图,指针落在惊蛰、春分、清明区域的概率是_三、解答题(共7小题,满分69分)18(10分)计算下列各题:(1)tan45sin60cos30;(2)sin230+sin45tan3019(5分)如图,将等腰直角三角形纸片ABC对折,折痕为CD展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF已知BC=1(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,PFM的形状是否发生变化?请说明理由;求PFM的周长的取值范围20(8分)如图,在平面直角坐标

6、系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出时,的取值范围;(3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由21(10分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定ABC不动,将DEF沿线段AB向右平移(1)若A=60,斜边AB=4,设AD=x(0x4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?2

7、2(10分)某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案23(12分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90,B=E=30. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)

8、中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长24(14分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PAy轴于点A,点P绕点A顺时针旋转60得到点P,我们称点P是点P的“旋转对应点”(1)若点P(4,2),则点P的“旋转对应点”P的坐标为 ;若点P的“旋转对应点”P的坐标为(5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P的坐标为 ;(

9、2)如图2,点Q是线段AP上的一点(不与A、P重合),点Q的“旋转对应点”是点Q,连接PP、QQ,求证:PPQQ;(3)点P与它的“旋转对应点”P的连线所在的直线经过点(,6),求直线PP与x轴的交点坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】如图,过点C作CDx轴于点D,点C的坐标为(3,4),OD=3,CD=4.根据勾股定理,得:OC=5.四边形OABC是菱形,点B的坐标为(8,4).点B在反比例函数(x0)的图象上,.故选D.2、B【解析】根据倒数的定义求解.【详解】-2的倒数是-故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握

10、3、D【解析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半4、D【解析】由可得,整体代入到原式即可得出答案【详解】解:,则原式故选:D【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则及代数式的求值是解题的关键5、A【解析】根据二次函数图象所在的象限大致画出图形,由此即可得出结论【详解】二次函数图象只经过第一、三、四象限,抛物线的顶点在第一象限故选A【点睛】本题考查了二次函数的性质以及二次函数的图象,大致画

11、出函数图象,利用数形结合解决问题是解题的关键6、C【解析】利用相似三角形的性质即可判断【详解】设ADx,AEy,DEBC,ADEABC,x9,y12,故选:C【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型7、C【解析】根据轴对称图形的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合8、C【解析】根据图象起始位置猜想点B或F为起点,则可以判断正确,错误结合图象判断3t4

12、图象的对称性可以判断正确结合图象易得正确【详解】解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1故正确;观察图象t在34之间时,图象具有对称性则可知,机器人在OB或OF上,则当t3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故正确;所有点中,只有点D到A距离为2个单位,故正确;因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故错误故选:C【点睛】本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势9、C【解析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可【详解】解:由a、b在数轴上的位置可

13、知:a1,b1,且|a|b|,a+b1,ab1,ab1,ab1故选:C10、D【解析】根据二次函数的图象与性质即可求出答案【详解】解:由抛物线的对称轴可知:,由抛物线与轴的交点可知:,故正确;抛物线与轴只有一个交点,故正确;令,故正确;由图象可知:令,即的解为,的根为,故正确;,故正确;故选D【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.二、填空题(共7小题,每小题3分,满分21分)11、(4,)【解析】由于函数y=(x0常数k0)的图象经过点A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积

14、公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标【详解】函数y=(x0、常数k0)的图象经过点A(1,1),把(1,1)代入解析式得到1=,k=1,设B点的横坐标是m,则AC边上的高是(m-1),AC=1根据三角形的面积公式得到1(m-1)=3,m=4,把m=4代入y=,B的纵坐标是,点B的坐标是(4,)故答案为(4,)【点睛】解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度根据三角形的面积公式即可解答12、1【解析】分析:直接利用二次根式以及绝对值的性质分别化简得出答案详解:原式=5-3=1故答案为1.点睛:此题主要考查了实数

15、运算,正确化简各数是解题关键13、27【解析】试题分析:设扇形的半径为r则,解得r=9,扇形的面积=27故答案为27考点:扇形面积的计算14、0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身15、31【解析】试题分析:由ABCD,根据平行线的性质得1=EFD=62,然后根据角平分线的定义即可得到2的度数ABCD,1=EFD=62,FG平分EFD,2=EFD=62=31故答案是31考点:平行线的性质16、【解析】分析:由已

16、知条件易得2y1=k,3y2=k,由此可得2y1=3y2,变形即可求得的值.详解:反比例函数的图象经过点A(2,y1)与B(3,y2),2y1=k,3y2=k,2y1=3y2,.故答案为:.点睛:明白:若点A和点B在同一个反比例函数的图象上,则是解决本题的关键.17、【解析】首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案【详解】如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,指针落在惊蛰、春分、清明的概率是:故答案为【点睛】此题考查了概率公式的应用注意概率所求情况数与总情况数之比三、解答题(共7小题,满分69分)18、(1);

17、(2).【解析】(1)原式=1=1=;(2)原式=+=【点睛】本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.19、(1)CF=;(2)PFM的形状是等腰直角三角形,不会发生变化,理由见解析;PFM的周长满足:2+2(1+)y1+1【解析】(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1x,在RtCFM中,根据FM2=CF2+CM2,构建方程即可解决问题;(2)PFM的形状是等腰直角三角形,想办法证明POFMOC,可得PFO=MCO=15,延长即可解决问题;设FM=y,由勾股定理可知:PF=PM=y,可得PFM的周长=(1+)y,由2y1,可得结论【详

18、解】(1)M为AC的中点,CM=AC=BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1x,在RtCFM中,FM2=CF2+CM2,即(1x)2=x2+22,解得,x=,即CF=;(2)PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,PMF=B=15,CD是中垂线,ACD=DCF=15,MPC=OPM,POMPMC,=,=,EMC=AEM+A=CMF+EMF,AEM=CMF,DPE+AEM=90,CMF+MFC=90,DPE=MPC,DPE=MFC,MPC=MFC,PCM=OCF=15,MPCOFC, ,POF=MOC,POFMOC,PFO=MCO=1

19、5,PFM是等腰直角三角形;PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=y,PFM的周长=(1+)y,2y1,PFM的周长满足:2+2(1+)y1+1【点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型20、(1); ;(2)或;(3)存在,或或或【解析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分、三种情况讨论,即可得出结论【详解】(1)一次函数与反

20、比例函数,相交于点,把代入得:,反比例函数解析式为,把代入得:,点C的坐标为,把,代入得:,解得:,一次函数解析式为;(2)根据函数图像可知:当或时,一次函数的图象在反比例函数图象的上方,当或时,;(3)存在或或或时,为等腰三角形,理由如下:过作轴,交轴于,直线与轴交于点,令得,点A的坐标为,点B的坐标为,点D的坐标为,当时,则,点P的坐标为:、;当时,是等腰三角形,平分,点D的坐标为,点P的坐标为,即;当时,如图:设,则,在中,由勾股定理得:,解得:,点P的坐标为,即,综上所述,当或或或时,为等腰三角形【点睛】本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的

21、范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论21、(1)y=(0x4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形【解析】分析:(1)根据平移的性质得到DFAC,所以由平行线的性质、勾股定理求得GD=,BG=,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以

22、AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.详解:(1)如图(1)DFAC,DGB=C=90,GDB=A=60,GBD=30BD=4x,GD=,BG=y=SBDG=(0x4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形ACB=DFE=90,D是AB的中点CD=AB,BF=DE,CD=BD=BF=BE,CF=BD,CD=BD=BF=CF,四边形CDBF是菱形;AC=BC,D是AB的中点CDAB即CDB=90四边形CDBF为菱形,四边形CDBF是正方形点睛:本

23、题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.22、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:购买篮球8个,排球12个;购买篮球9,排球11个;购买篮球2个,排球2个;方案最省钱【解析】试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得

24、到相应整数解,从而求解试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:解得答:篮球每个50元,排球每个30元(2)设购买篮球m个,则购买排球(20-m)个,依题意,得:50m+30(20-m)1解得:m2又m8,8m2篮球的个数必须为整数,只能取8、9、2满足题意的方案有三种:购买篮球8个,排球12个,费用为760元;购买篮球9,排球11个,费用为780元;购买篮球2个,排球2个,费用为1元以上三个方案中,方案最省钱点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键23、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析

25、】(1)由旋转可知:AC=DC,C=90,B=DCE=30,DAC=CDE=20ADC是等边三角形DCA=20DCA=CDE=20DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90,B =30AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90,DCM+BCN=180-90=90,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),

26、AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20,F1DBE,F1F1D=ABC=20,BF1=DF1,F1BD=ABC=30,F1DB=90,F1DF1=ABC=20,DF1F1是等边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20,点D是角平分线上一点,DBC=DCB=20=30,BG=BC=,BD=3CDF1=180-BCD=180-30=150,CDF1=320-

27、150-20=150,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20,点D是角平分线上一点,DEAB,DBC=BDE=ABD=20=30,又BD=3,BE=3cos30=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或224、(1)(2,2+2),(10,165),(,ba);(2)见解析;(3)直线PP与x轴的交点坐标(,0)【解析】(1)当P(-4,2)时,OA=2,PA=4,由旋转知,PAH=30,进而PH=PA=2,AH=PH=2,即可得出结论;当P(-5,16)时,确定出PA=10,AH=5,由旋转知,P

28、A=PA=10,OA=OH-AH=16-5,即可得出结论;当P(a,b)时,同的方法得,即可得出结论;(2)先判断出BQQ=60,进而得出PAP=PPA=60,即可得出PQQ=PAP=60,即可得出结论;(3)先确定出yPP=x+3,即可得出结论【详解】解:(1)如图1,当P(4,2)时,PAy轴,PAH=90,OA=2,PA=4,由旋转知,PA=4,PAP=60,PAH=30,在RtPAH中,PH=PA=2,AH=PH=2,OH=OA+AH=2+2,P(2,2+2),当P(5,16)时,在RtPAH中,PAH=30,PH=5,PA=10,AH=5,由旋转知,PA=PA=10,OA=OHAH=165,P(10,165),当P(a,b)时,同的方法得,P(,ba),故答案为:(2,2+2),(10,165),(,ba);(2)如图2,过点Q作QBy轴于B,BQQ=60,由题意知,PAP是等边三角形,PAP=PPA=60,QBy轴,PAy轴,QBPA,PQQ=PAP=60,PQQ=60=PPA,PPQQ;(3)设yPP=kx+b,由题意知,k=,直线经过点(,6),b=3,yPP=x+3,令y=0,x=,直线PP与x轴的交点坐标(,0)【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁