2023届安徽省定远县中考三模数学试题含解析.doc

上传人:茅**** 文档编号:87789744 上传时间:2023-04-17 格式:DOC 页数:19 大小:997KB
返回 下载 相关 举报
2023届安徽省定远县中考三模数学试题含解析.doc_第1页
第1页 / 共19页
2023届安徽省定远县中考三模数学试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2023届安徽省定远县中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省定远县中考三模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()ABCD2定义:如果一元二次方程ax2+bx+c=0(a0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次

2、方程ax2+bx+c=0(a0)满足ab+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A方有两个相等的实数根B方程有一根等于0C方程两根之和等于0D方程两根之积等于03某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A38B39C40D424下列各运算中,计算正确的是( )ABCD5关于x的一元二次方程(a1)x2+x+a210的一个根为0,则a值为()A1B1C1D06抛物线的顶点坐标是( )A(2,3)B(-2,3)C(2,-3)D(-2,-3)7正方形AB

3、CD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180后,C点的坐标是( )A(2,0)B(3,0)C(2,1)D(2,1)8若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )ABCD9若一组数据1、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )A0B2.5C3 D510在同一平面直角坐标系中,函数y=x+k与(k为常数,k0)的图象大致是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,直线l1l2,则1+2=_12如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_13如图,这是怀柔区

4、部分景点的分布图,若表示百泉山风景区的点的坐标为,表示慕田峪长城的点的坐标为,则表示雁栖湖的点的坐标为_14如果m,n互为相反数,那么|m+n2016|=_15如图,在边长为1的正方形格点图中,B、D、E为格点,则BAC的正切值为_16若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_三、解答题(共8题,共72分)17(8分)如图1,的余切值为2,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P(1)点D在运动时,下列的线段和角中,_是始终保持不变的量(填序号);(2)设正方形的边

5、长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果与相似,但面积不相等,求此时正方形的边长18(8分)先化简:(),再从2,1,0,1这四个数中选择一个合适的数代入求值19(8分)如图,在平面直角坐标系xOy中,直线ykx+m与双曲线y相交于点A(m,2)(1)求直线ykx+m的表达式;(2)直线ykx+m与双曲线y的另一个交点为B,点P为x轴上一点,若ABBP,直接写出P点坐标20(8分)解不等式组请结合题意填空,完成本题的解答:(I)解不等式(1),得 ;(II)解不等式(2),得 ;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为

6、21(8分)如图,轮船从点A处出发,先航行至位于点A的南偏西15且点A相距100km的点B处,再航行至位于点A的南偏东75且与点B相距200km的点C处(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向(参考数据:)22(10分)如图,已知RtABC中,C=90,D为BC的中点,以AC为直径的O交AB于点E(1)求证:DE是O的切线;(2)若AE:EB=1:2,BC=6,求O的半径23(12分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P(1)求这条

7、抛物线的表达式和顶点P的坐标; (2)抛物线的对称轴与x轴相交于点M,求PMC的正切值;(3)点Q在y轴上,且BCQ与CMP相似,求点Q的坐标24 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H(1)观察猜想如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是 ;AHB (2)探究证明如图2,当四边形ABCD和FFCG均为矩形,且ACBECF30时,(1)中的结论是否仍然成立,并说明理由(3)拓展延伸在(2)的条件下,若BC9,FC6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离参考答

8、案一、选择题(共10小题,每小题3分,共30分)1、D【解析】由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可【详解】因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是故选D【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键2、C【解析】试题分析:根据已知

9、得出方程ax2+bx+c=0(a0)有两个根x=1和x=1,再判断即可解:把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=1代入方程ax2+bx+c=0得出ab+c=0,方程ax2+bx+c=0(a0)有两个根x=1和x=1,1+(1)=0,即只有选项C正确;选项A、B、D都错误;故选C3、B【解析】根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数【详解】解:由于共有6个数据,所以中位数为第3、4个数的平均数,即中位数为=39,故选:B【点睛】本题主要考查了中位数要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数

10、叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数4、D【解析】利用同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则以及完全平方公式即可判断【详解】A、,该选项错误;B、,该选项错误;C、,该选项错误;D、,该选项正确;故选:D【点睛】本题考查了同底数幂的乘法、除法法则,幂的乘方法则以及完全平方公式,正确理解法则是关键5、B【解析】根据一元二次方程的定义和一元二次方程的解的定义得出:a10,a210,求出a的值即可【详解】解:把x0代入方程得:a210,解得:a1,(a1)x2+x+a210是关于x的一元二次方程,a10,即a1,a的值是1故选:B【点睛

11、】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a10,a210,不要漏掉对一元二次方程二次项系数不为0的考虑6、A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h7、B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解试题解析:AC=2,则

12、正方形ABCD绕点A顺时针方向旋转180后C的对应点设是C,则AC=AC=2,则OC=3,故C的坐标是(3,0)故选B考点:坐标与图形变化-旋转8、D【解析】甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.【详解】解:由于函数的图像经过点,则有 图象过第二、四象限,k=-1,一次函数y=x-1,图象经过第一、三、四象限,故选:D【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;9、C【解析】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)5=(a+10)5=0

13、.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,符合排列顺序(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,不符合排列顺序(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=a,解得a=2.5,符合排列顺序(4)将这组数据从小到大的顺序排列后为

14、1,2,1,a,4,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5,不符合排列顺序(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,a不可能是1故选C【点睛】本题考查中位数;算术平均数10、B【解析】选项A中,由一次函数y=x+k的图象知k0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k0,由反比例函数y=的图象知k0,正确,所以选项B正确;由一次函数

15、y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、30【解析】分别过A、B作l1的平行线AC和BD,则可知ACBDl1l2,再利用平行线的性质求得答案【详解】如图,分别过A、B作l1的平行线AC和BD,l1l2,ACBDl1l2,1=EAC,2=FBD,CAB+DBA=180,EAB+FBA=125+85=210,EAC+CAB+DBA+FBD=210,即1+2+180=210,1+2=30,故答案为30【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即两直线平行同位角相等,两直线平行内错角

16、相等,两直线平行同旁内角互补12、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方13、【解析】直接利用已知点坐标得出原点位置,进而得出答案【详解】解:如图所示:雁栖湖的点的坐标为:(1,-3)故答案为(1,-3)【点睛】本题考查坐标确定位置,正确得出原点的位置是解题关键14、1【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n1|,

17、m,n互为相反数,m+n=0,|m+n1|=|1|=1;故答案为1考点:1.绝对值的意义;2.相反数的性质.15、 【解析】根据圆周角定理可得BAC=BDC,然后求出tanBDC的值即可【详解】由图可得,BAC=BDC,O在边长为1的网格格点上,BE=3,DB=4,则tanBDC=tanBAC=故答案为【点睛】本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.16、1【解析】联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值【详解】联立得:,2+,得:10x=20,解得:x=2,将x=2代入,得:1-y=1,解

18、得:y=0,则,将x=2、y=0代入,得:,解得:,则mn=1,故答案为1【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值三、解答题(共8题,共72分)17、(1);(2);(3)或.【解析】(1)作于M,交于N,如图,利用三角函数的定义得到,设,则,利用勾股定理得,解得,即,设正方形的边长为x,则,由于,则可判断为定值;再利用得到,则可判断为定值;在中,利用勾股定理和三角函数可判断在变化,在变化,在变化;(2)易得四边形为矩形,则,证明,利用相似比可得到y与x的关系式;(3)由于,与相似,且面积不相等,利用相似比得到,讨论:当点P在点F点右侧时,则,所

19、以,当点P在点F点左侧时,则,所以,然后分别解方程即可得到正方形的边长【详解】(1)如图,作于M,交于N, 在中,设,则,解得,设正方形的边长为x,在中,在中,为定值;,为定值;在中,而在变化,在变化,在变化,在变化,所以和是始终保持不变的量;故答案为:(2)MNAP,DEFG是正方形,四边形为矩形,即,(3),与相似,且面积不相等,即,当点P在点F点右侧时,AP=AF+PF=,解得,当点P在点F点左侧时,解得,综上所述,正方形的边长为或【点睛】本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质18、,1【解析】先算括号内的减法,同时把除法变成乘法,再根据

20、分式的乘法进行计算,最后代入求出即可【详解】原式=由题意,x不能取1,1,2,x取2当x=2时,原式=1【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键19、(1)m1;y3x1;(2)P1(5,0),P2(,0)【解析】(1)将A代入反比例函数中求出m的值,即可求出直线解析式,(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.【详解】解:(1)点A(m,2)在双曲线上,m1,A(1,2),直线ykx1,点A(1,2)在直线ykx1上,y3x1(2) ,解得或,B(,3),AB,设P(n,0),则有(n

21、)2+32解得n5或,P1(5,0),P2(,0)【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.20、(I)x1;()x2;(III)见解析;()x1【解析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集【详解】(I)解不等式(1),得x1;()解不等式(2),得x2;()把不等式(1)和(2)解集在数轴上表示出来,如下图所示:()原不等式组的解集为x1【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键21、(1)173;

22、(2)点C位于点A的南偏东75方向【解析】试题分析:(1)作辅助线,过点A作ADBC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向试题解析:解:(1)如答图,过点A作ADBC于点D由图得,ABC=7510=60在RtABD中,ABC=60,AB=100,BD=50,AD=50CD=BCBD=20050=1在RtACD中,由勾股定理得:AC=(km)答:点C与点A的距离约为173km(2)在ABC中,AB2+AC2=1002+(100)2=40000,BC2=2002=40000,AB2+AC2=B

23、C2. BAC=90.CAF=BACBAF=9015=75答:点C位于点A的南偏东75方向考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理22、(1)证明见解析;(1) 【解析】试题分析:(1)求出OED=BCA=90,根据切线的判定即可得出结论;(1)求出BECBCA,得出比例式,代入求出即可试题解析:(1)证明:连接OE、ECAC是O的直径,AEC=BEC=90D为BC的中点,ED=DC=BD,1=1OE=OC,3=4,1+3=1+4,即OED=ACBACB=90,OED=90,DE是O的切线;(1)由(1)知:BEC=90

24、在RtBEC与RtBCA中,B=B,BEC=BCA,BECBCA,BE:BC=BC:BA,BC1=BEBAAE:EB=1:1,设AE=x,则BE=1x,BA=3xBC=6,61=1x3x,解得:x=,即AE=,AB=,AC=,O的半径=点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出OED=BCA和BECBCA是解答此题的关键23、(1)(1,4)(2)(0,)或(0,-1)【解析】试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;(2)由OC/PM,可得PMC=MCO,求tanM

25、CO即可 ;(3)分情况进行讨论即可得.试题解析:(1)当x=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),OC=3,OA=OC,OA=3,A(3,0),A、B关于x=1对称,B(-1,0),A、B在抛物线y=ax2+bx+3上, , ,抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,顶点P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),OC=3,OM=1,OC/PM,PMC=MCO,tanPMC=tanMCO= = ;(3)Q在C点的下方,BCQ=CMP,CM=,PM=4,BC=,或 ,CQ=或4,Q1(0,),Q2(0,-1).24、

26、(1),45;(2)不成立,理由见解析;(3) .【解析】(1)由正方形的性质,可得 ,ACBGEC45,求得CAECBF,由相似三角形的性质得到,CAB45,又因为CBA90,所以AHB45.(2)由矩形的性质,及ACBECF30,得到CAECBF,由相似三角形的性质可得CAECBF,,则CAB60,又因为CBA90,求得AHB30,故不成立.(3)分两种情况讨论:作BMAE于M,因为A、E、F三点共线,及AFB30,AFC90,进而求得AC和EF ,根据勾股定理求得AF,则AEAFEF,再由(2)得: ,所以BF33,故BM .如图3所示:作BMAE于M,由A、E、F三点共线,得:AE6+

27、2,BF3+3,则BM.【详解】解:(1)如图1所示:四边形ABCD和EFCG均为正方形, ,ACBGEC45, ACEBCF,CAECBF,CAECBF,CABCAE+EABCBF+EAB45,CBA90,AHB180904545,故答案为,45; (2)不成立;理由如下:四边形ABCD和EFCG均为矩形,且ACBECF30,ACEBCF,CAECBF,CAECBF,,CABCAE+EABCBF+EAB60,CBA90,AHB180906030;(3)分两种情况:如图2所示:作BMAE于M,当A、E、F三点共线时,由(2)得:AFB30,AFC90,在RtABC和RtCEF中,ACBECF30,AC,EFCFtan306 2 ,在RtACF中,AF ,AEAFEF6 2,由(2)得: ,BF (62)33,在BFM中,AFB30,BMBF ;如图3所示:作BMAE于M,当A、E、F三点共线时,同(2)得:AE6+2,BF3+3,则BMBF;综上所述,当A、E、F三点共线时,点B到直线AE的距离为 【点睛】本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁