2023届广西壮族自治区南宁市第二中学中考数学全真模拟试题含解析.doc

上传人:茅**** 文档编号:87785310 上传时间:2023-04-17 格式:DOC 页数:20 大小:886KB
返回 下载 相关 举报
2023届广西壮族自治区南宁市第二中学中考数学全真模拟试题含解析.doc_第1页
第1页 / 共20页
2023届广西壮族自治区南宁市第二中学中考数学全真模拟试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2023届广西壮族自治区南宁市第二中学中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广西壮族自治区南宁市第二中学中考数学全真模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,等边ABC的边长为1cm,D、E分别AB、AC是上的点,将ADE沿直线DE折叠,点A落在点A处,且点A在ABC外部,则阴影部分的周长为()cmA1B2C3D42如图1,一个

2、扇形纸片的圆心角为90,半径为1如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()ABCD3已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x2时,y随x的增大而增大,且2x1时,y的最大值为9,则a的值为A1或2 B或C D14如图所示的几何体,它的左视图是()ABCD5七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是

3、161D两组相比,乙组同学身高的方差大6足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567h08141820201814下列结论:足球距离地面的最大高度为20m;足球飞行路线的对称轴是直线;足球被踢出9s时落地;足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是( )A1B2C3D47计算的结果是()A1B1C1xD8ABC在网络中的位置如图所示,则cosACB的值为()ABCD9有15位同学参加歌咏比赛,所得的分数互不相同,取得

4、分前8位同学进入决赛某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A平均数B中位数C众数D方差10某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()ABCD11如图,矩形ABCD内接于O,点P是上一点,连接PB、PC,若AD=2AB,则cosBPC的值为()ABCD122018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A18108 B1.8108 C1.8109 D0.181010二、填空题:(本大题共6个小题,每小题4分,共

5、24分)13如图,D,E分别是ABC的边AB、BC上的点,且DEAC,AE、CD相交于点O,若SDOE:SCOA=1:16,则SBDE与SCDE的比是_14如图,在四边形ABCD中,ADBC,AB=CD且AB与CD不平行,AD=2,BCD=60,对角线CA平分BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为_158的立方根为_.16如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_17小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分

6、配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数 等级餐厅五星四星三星二星一星合计甲53821096129271000乙460187154169301000丙4863888113321000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在_(填甲”、“乙或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.18因式分解:3x312x=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知

7、ABC内接于O,AD平分BAC(1)如图1,求证:;(2)如图2,当BC为直径时,作BEAD于点E,CFAD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交O于点G,连接OE,若EF=2EG,AC=2,求OE的长20(6分)先化简,再求值:,请你从1x3的范围内选取一个适当的整数作为x的值21(6分)如图,在ABC中,ACB=90,点D是AB上一点,以BD为直径的O和AB相切于点P(1)求证:BP平分ABC;(2)若PC=1,AP=3,求BC的长22(8分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售市场调查反映:每降价1元,每星期可

8、多卖30件已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?23(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角ABC为14,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因(参考数据:sin14=0.24,cos14=0.97,tan14=0.25)24(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区

9、教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_,图中m的值是_;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数25(10分)如图,在ABC中,AB=AC,D为BC的中点,DEAB,DFAC,垂足分别为E、F,求证:DE=DF26(12分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有论语、大学、中庸(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上

10、,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛小礼诵读论语的概率是 ;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率27(12分)如图,AB是O的直径,CD为弦,且ABCD于E,点M为上一动点(不包括A,B两点),射线AM与射线EC交于点F(1)如图,当F在EC的延长线上时,求证:AMDFMC(2)已知,BE2,CD1求O的半径;若CMF为等腰三角形,求AM的长(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是

11、符合题目要求的)1、C【解析】由题意得到DADA,EAEA,经分析判断得到阴影部分的周长等于ABC的周长即可解决问题【详解】如图,由题意得:DADA,EAEA,阴影部分的周长DAEADBCEBGGFCF(DABD)(BGGFCF)(AECE)ABBCAC1113(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.2、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出AOD,根据扇形面积公式、三角形面积公式计算,得到答案【详解】解:连接OD,在RtOCD中,OCOD2,ODC30,CD COD60

12、,阴影部分的面积 ,故选:C【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键3、D【解析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a0,然后由-2x1时,y的最大值为9,可得x=1时,y=9,即可求出a【详解】二次函数y=ax2+2ax+3a2+3(其中x是自变量),对称轴是直线x=-=-1,当x2时,y随x的增大而增大,a0,-2x1时,y的最大值为9,x=1时,y=a+2a+3a2+3=9,3a2+3a-6=0,a=1,或a=-2(不合题意舍去)故选D【点睛】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a0)的顶点坐标是(-,),

13、对称轴直线x=-,二次函数y=ax2+bx+c(a0)的图象具有如下性质:当a0时,抛物线y=ax2+bx+c(a0)的开口向上,x-时,y随x的增大而减小;x-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点当a0时,抛物线y=ax2+bx+c(a0)的开口向下,x-时,y随x的增大而增大;x-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点4、D【解析】分析:根据从左边看得到的图形是左视图,可得答案详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左

14、视图5、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键6、B【解析】试题解析:由题意,抛物线的解析式为y=ax(x9),把(1,8)代入可得a=1,y=t2+9t=(t4.5)2+20.25,足球距离地面的最大高度为20.25m,故错误,抛物线的对称轴t=4.5,故正确,t=9时,y=

15、0,足球被踢出9s时落地,故正确,t=1.5时,y=11.25,故错误,正确的有,故选B7、B【解析】根据同分母分式的加减运算法则计算可得【详解】解:原式=-1,故选B【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则8、B【解析】作ADBC的延长线于点D,如图所示:在RtADC中,BD=AD,则AB=BDcosACB=,故选B9、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】解:由于15个人中,第8名的成绩是

16、中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数故选B【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用10、C【解析】根据中位数的定义解答即可【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1所以这些运动员跳高成绩的中位数是1.1故选:C【点睛】本题考查了中位数的意义中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数11、A【解析】连接

17、BD,根据圆周角定理可得cosBDC=cosBPC,又BD为直径,则BCD=90,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cosBDC=,即可得出结论.【详解】连接BD,四边形ABCD为矩形,BD过圆心O,BDC=BPC(圆周角定理)cosBDC=cosBPCBD为直径,BCD=90,=,设DC为x,则BC为2x,BD=x,cosBDC=,cosBDC=cosBPC,cosBPC=.故答案选A.【点睛】本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.12、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,

18、要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:1800000000=1.8109,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题:(本大题共6个小题,每小题4分,共24分)13、1:3【解析】根据相似三角形的判定,由DEAC,可知DOECOA,BDEBCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不

19、同底的三角形的面积可知与的比是1:3.故答案为1:3.14、2【解析】将PA+PB转化为PA+PC的值即可求出最小值【详解】解:E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,B点关于EF的对称点C点,AC即为PA+PB的最小值,BCD=, 对角线AC平分BCD,ABC=, ZBCA=,BAC=,AD=2,PA+PB的最小值=.故答案为: .【点睛】求PA+PB的最小值, PAPB不能直接求, 可考虑转化PAP的值,从而找出其最小值求解.15、2.【解析】根据立方根的定义可得8的立方根为2.【点睛】本题考查了立方根.16、 【解析】设CE=x,由矩形的性质得出AD=BC=5,CD=

20、AB=3,A=D=90由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在RtDEF根据勾股定理列出关于x的方程即可解决问题【详解】设CE=x四边形ABCD是矩形,AD=BC=5,CD=AB=3,A=D=90将BCE沿BE折叠,使点C恰好落在AD边上的点F处,BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中,由勾股定理得:AF2=52-32=16,AF=4,DF=5-4=1在RtDEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案为17、丙【解

21、析】不低于四星,即四星与五星的和居多为符合题意的餐厅【详解】不低于四星,即比较四星和五星的和,丙最多故答案是:丙【点睛】考查了可能性的大小和统计表解题的关键是将问题转化为比较四星和五星的和的多少18、3x(x+2)(x2)【解析】先提公因式3x,然后利用平方差公式进行分解即可【详解】3x312x=3x(x24)=3x(x+2)(x2),故答案为3x(x+2)(x2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算

22、步骤19、(1)证明见解析;(1)证明见解析;(3)1.【解析】(1)连接OB、OC、OD,根据圆心角与圆周角的性质得BOD=1BAD,COD=1CAD,又AD平分BAC,得BOD=COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作OMAD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO交AB于点H,连接CG,连接OA,BC为O直径,则G=CFE=FEG=90,四边形CFEG是矩形,得EG=CF,又AD平分BAC,再根据邻补角与余角的性质可得BAF=ABE,ACF=CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角

23、边”证明出HBOABC,根据相似三角形的性质得出对应边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,BAD和BOD是所对的圆周角和圆心角,CAD和COD是所对的圆周角和圆心角,BOD=1BAD,COD=1CAD,AD平分BAC,BAD=CAD,BOD=COD,=;(1)如图1,过点O作OMAD于点M,OMA=90,AM=DM,BEAD于点E,CFAD于点F,CFM=90,MEB=90,OMA=MEB,CFM=OMA,OMBE,OMCF,BEOMCF,OB=OC,=1,FM=EM,AMFM=DMEM,DE=AF;(3)延长EO交AB于点H,连接CG,连接OABC为O直径,BA

24、C=90,G=90,G=CFE=FEG=90,四边形CFEG是矩形,EG=CF,AD平分BAC,BAF=CAF=90=45,ABE=180BAFAEB=45,ACF=180CAFAFC=45,BAF=ABE,ACF=CAF,AE=BE,AF=CF,在RtACF中,AFC=90,sinCAF=,即sin45=,CF=1=,EG=,EF=1EG=1,AE=3,在RtAEB中,AEB=90,AB=6,AE=BE,OA=OB,EH垂直平分AB,BH=EH=3,OHB=BAC,ABC=ABCHBOABC,OH=1,OE=EHOH=31=1【点睛】本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关

25、键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.20、1.【解析】根据分式的化简法则:先算括号里的,再算乘除,最后算加减对不同分母的先通分,按同分母分式加减法计算,且要把复杂的因式分解因式,最后约分,化简完后再代入求值,但是不能代入-1,0,1,保证分式有意义【详解】解:=当x=2时,原式=1【点睛】本题考查分式的化简求值及分式成立的条件,掌握运算法则准确计算是本题的解题关键.21、(1)证明见解析;(2) 【解析】试题分析:(1)连接OP,首先证明OPBC,推出OPB=PBC,由OP=OB,推出OPB=OBP,由此推出PBC=OBP;(2)作PHAB于H首先证明PC=PH=1,在RtA

26、PH中,求出AH,由APHABC,求出AB、BH,由RtPBCRtPBH,推出BC=BH即可解决问题.试题解析:(1)连接OP,AC是O的切线,OPAC, APO=ACB=90,OPBC,OPB=PBC,OP=OB,OPB=OBP,PBC=OBP,BP平分ABC;(2)作PHAB于H则AHP=BHP=ACB=90,又PBC=OBP,PB=PB,PBCPBH ,PC=PH=1,BC=BH,在RtAPH中,AH=,在RtACB中,AC2+BC2=AB2(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得 22、(1)y=30x+1;(2)每件售价定为55元时,每星期的销售

27、利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【解析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据 (1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【详解】(1)y300+30(60x)30x+1(2)设每星期利润为W元,W(x40)(30x+1)

28、30(x55)2+2x55时,W最大值2每件售价定为55元时,每星期的销售利润最大,最大利润2元(3)由题意(x40)(30x+1)6480,解得52x58,当x52时,销售300+308540,当x58时,销售300+302360,该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【点睛】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.23、客车不能通过限高杆,理由见解析【解析】根据DEBC,DFAB,得到EDF=ABC=14在RtEDF中,根据cosEDF=,求出DF的值,即可判断.【详解】DEBC,DFAB,EDF=ABC=14在RtEDF

29、中,DFE=90,cosEDF=,DF=DEcosEDF=2.55cos142.550.972.1限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,客车不能通过限高杆【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.24、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中

30、间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.25、答案见解析【解析】由于AB=AC,那么B=C,而DEAC,DFAB可知BFD=CED=90

31、,又D是BC中点,可知BD=CD,利用AAS可证BFDCED,从而有DE=DF26、(1);(2)【解析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可【详解】(1)诵读材料有论语,三字经,弟子规三种,小明诵读论语的概率=,(2)列表得:小明小亮ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种 所以小明和小亮诵读两个不同材料的概率=【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概

32、率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点27、(1)详见解析;(2)2;1或【解析】(1)想办法证明AMDADC,FMCADC即可解决问题;(2)在RtOCE中,利用勾股定理构建方程即可解决问题;分两种情形讨论求解即可.【详解】解:(1)证明:如图中,连接AC、ADABCD,CEED,ACAD,ACDADC,AMDACD,AMDADC,FMC+AMC110,AMC+ADC110,FMCADC,FMCADC,FMCAMD(2)解:如图1中,连接OC设O的半径为r在RtOCE中,OC2OE2+EC2,r2(r2)2+42,r2FMCACDF,只有两种情形:MFFC,FMMC如图中,当FMFC时,易证明CMAD,AMCD1如图中,当MCMF时,连接MO,延长MO交AD于HMFCMCFMAD,FMCAMD,ADMMAD,MAMD,MHAD,AHDH,在RtAED中,AD,AH,tanDAE,OH,MH2+,在RtAMH中,AM【点睛】本题考查了圆的综合题:熟练掌握与圆有关的性质、圆的内接正方形的性质和旋转的性质;灵活利用全等三角形的性质;会利用面积的和差计算不规则几何图形的面积

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁