《2023届广东省湛江市徐闻县重点中学中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东省湛江市徐闻县重点中学中考数学适应性模拟试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( )A线段EF的长逐渐增大B线段EF的长逐渐减少C线段EF的长不变D线段EF的
2、长不能确定2ABC在网络中的位置如图所示,则cosACB的值为()ABCD32018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力数字7600用科学记数法表示为()A0.76104B7.6103C7.6104D761024如图,O是ABC的外接圆,AD是O的直径,连接CD,若O的半径r=5,AC=5 ,则B的度数是( )A30 B45 C50 D605如图,ABC是ABC以点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则OB:OB为()A2:3B3:2C4:5D4:96下列运算正确的是( )A(a
3、2)3 =a5BC(3ab)2=6a2b2Da6a3 =a27-4的相反数是( )ABC4D-48下列各数中负数是()A(2) B|2| C(2)2 D(2)39八边形的内角和为()A180B360C1 080D1 44010下列调查中,最适合采用普查方式的是()A对太原市民知晓“中国梦”内涵情况的调查B对全班同学1分钟仰卧起坐成绩的调查C对2018年央视春节联欢晚会收视率的调查D对2017年全国快递包裹产生的包装垃圾数量的调查二、填空题(共7小题,每小题3分,满分21分)11设、是一元二次方程的两实数根,则的值为 .12在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中
4、摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是_.13如图,网格中的四个格点组成菱形ABCD,则tanDBC的值为_ . 14分解因式:x32x2+x=_15如图,点M、N分别在AOB的边OA、OB上,将AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为_16掷一枚材质均匀的骰子,掷得的点数为合数的概率是_ .17如图,点A在双曲线上,点B在双曲线上,且ABx轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 三、解答题(共7小题,满分69分)18(10分)如图,已知矩形ABCD中,AB=3,
5、AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s)(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围19(5分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?20(8分)如图,在A
6、BC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB若ABC=70,则NMA的度数是 度若AB=8cm,MBC的周长是14cm求BC的长度;若点P为直线MN上一点,请你直接写出PBC周长的最小值21(10分)如图1,反比例函数(x0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC75,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值22(10分)图中的每个小方格都是边
7、长为1个单位长度的正方形,每个小正方形的顶点叫格点,ABC的顶点均在格点上(1)画出将ABC绕点B按逆时针方向旋转90后所得到的A1BC1;(2)画出将ABC向右平移6个单位后得到的A2B2C2;(3)在(1)中,求在旋转过程中ABC扫过的面积23(12分)如图,在ABC中,已知AB=AC=5,BC=6,且ABCDEF,将DEF与ABC重合在一起,ABC不动,DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点(1)求证:ABEECM;(2)探究:在DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短
8、时,求重叠部分的面积24(14分)如图1,定义:在直角三角形ABC中,锐角的邻边与对边的比叫做角的余切,记作ctan,即ctan,根据上述角的余切定义,解下列问题:(1)如图1,若BC3,AB5,则ctanB_;(2)ctan60_;(3)如图2,已知:ABC中,B是锐角,ctan C2,AB10,BC20,试求B的余弦cosB的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】因为R不动,所以AR不变根据三角形中位线定理可得EF= AR,因此线段EF的长不变【详解】如图,连接AR,E、F分别是AP、RP的中点, EF为APR的中位线,EF= AR,为定值线段
9、EF的长不改变故选:C【点睛】本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变2、B【解析】作ADBC的延长线于点D,如图所示:在RtADC中,BD=AD,则AB=BDcosACB=,故选B3、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:76007.6103,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正
10、确确定a的值以及n的值4、D【解析】根据圆周角定理的推论,得B=D根据直径所对的圆周角是直角,得ACD=90在直角三角形ACD中求出D 则sinD=D=60B=D=60故选D“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边5、A【解析】根据位似的性质得ABCABC,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,ABAB,ACAC,ABCABC,ABC与ABC的面积的比4:9,ABC与ABC的相似比为2:3, ,故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两
11、个图形叫做位似图形,这个点叫做位似中心6、B【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.解析: ,故A选项错误; a3a = a4故B选项正确;(3ab)2 = 9a2b2故C选项错误; a6a3 = a3故D选项错误.故选B.7、C【解析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.8、B【解析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可【详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,
12、是正数故选B【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键9、C【解析】试题分析:根据n边形的内角和公式(n-2)180 可得八边形的内角和为(8-2)180=1080,故答案选C.考点:n边形的内角和公式.10、B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查
13、要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查二、填空题(共7小题,每小题3分,满分21分)11、27【解析】试题分析:根据一元二次方程根与系数的关系,可知+=5,=-1,因此可知=-2=25+2=27.故答案为27.点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.12、【解析】首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答
14、案注意此题属于放回实验【详解】列表得:第一次 第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白共有9种等可能的结果,两次都摸到黑球的只有1种情况,两次都摸到黑球的概率是.故答案为:.【点睛】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.13、3【解析】试题分析:如图,连接AC与BD相交于点O,四边形ABCD是菱形,ACBD,BO=BD,CO=AC,由勾股定理得,AC=,BD=,所以,BO=,CO=,所以,tanDBC=3故答案为3考点:3菱形的性质;3解直角三角形;3网格型14、x(x-1)2.【解析】由题意得,x32x2+x= x(x1)215、【
15、解析】由折叠的性质可得MNOP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长【详解】设MN与OP交于点E,点O、P的距离为4,OP=4折叠MNOP,EO=EP=2,在RtOME中,ME=在RtONE中,NE=MN=ME-NE=2-故答案为2-【点睛】本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键16、【解析】分析:根据概率的求法,找准两点: 全部情况的总数; 符合条件的情况数目;二者的比值就是其发生的概率详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为= 故答案为点睛:本题主要考查概
16、率的求法,用到的知识点为:概率=所求情况数与总情况数之比17、2【解析】如图,过A点作AEy轴,垂足为E,点A在双曲线上,四边形AEOD的面积为1点B在双曲线上,且ABx轴,四边形BEOC的面积为3四边形ABCD为矩形,则它的面积为312三、解答题(共7小题,满分69分)18、 (1) 1;(1) m【解析】(1)在RtABP中利用勾股定理即可解决问题;(1)分两种情形求出AD的值即可解决问题:如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.【详解】解:(1):(1)如图1中,设PD=t则PA=5-tP、B、
17、E共线,BPC=DPC,ADBC,DPC=PCB,BPC=PCB,BP=BC=5,在RtABP中,AB1+AP1=PB1,31+(5-t)1=51,t=1或9(舍弃),t=1时,B、E、P共线 (1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1作EQBC于Q,EMDC于M则EQ=1,CE=DC=3易证四边形EMCQ是矩形,CM=EQ=1,M=90,EM=,DAC=EDM,ADC=M,ADCDME,AD=,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1作EQBC于Q,延长QE交AD于M则EQ=1,CE=DC=3在RtECQ中,QC=DM=,由DMECDA
18、,AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围m【点睛】本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.19、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,解得:答:
19、购买一副乒乓球拍28元,一副羽毛球拍60元.(2)528360320元答:购买5副乒乓球拍和3副羽毛球拍共320元20、(1)50;(2)6;1 【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出MBC的周长=AC+BC,再代入数据进行计算即可得解;当点P与M重合时,PBC周长的值最小,于是得到结论试题解析:解:(1)AB=AC,C=ABC=70,A=40AB的垂直平分线交AB于点N,ANM=90,NMA=50故答案为50;(2)MN是AB的垂直平分线,AM=BM,MBC的周长=BM
20、+CM+BC=AM+CM+BC=AC+BCAB=8,MBC的周长是1,BC=18=6;当点P与M重合时,PBC周长的值最小,理由:PB+PC=PA+PC,PA+PCAC,P与M重合时,PA+PC=AC,此时PB+PC最小,PBC周长的最小值=AC+BC=8+6=121、(1);(2),;(3)【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BHAD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=21,BH=21,可判断ABH为等腰直角三角形,所以BAH=45,得到DAC=BACBAH=30,根据特殊角的三角函数值得tanDAC=;由于
21、ADy轴,则OD=1,AD=2,然后在RtOAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,1),于是可根据待定系数法求出直线AC的解析式为y=x1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0t2),由于直线lx轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t1),则MN=t+1,根据三角形面积公式得到SCMN=t(t+1),再进行配方得到S=(t)2+(0t2),最后根据二次函数的最值问题求解试题解析:(1)把A(2,1)代入y=,得k=21=2;(2)作BHAD于H,如图1,把B(1,a)代入反比例函数解析式y=
22、,得a=2,B点坐标为(1,2),AH=21,BH=21,ABH为等腰直角三角形,BAH=45,BAC=75,DAC=BACBAH=30,tanDAC=tan30=;ADy轴,OD=1,AD=2,tanDAC=,CD=2,OC=1,C点坐标为(0,1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,1)代入得 ,解得 ,直线AC的解析式为y=x1;(3)设M点坐标为(t,)(0t2),直线lx轴,与AC相交于点N,N点的横坐标为t,N点坐标为(t, t1),MN=(t1)=t+1,SCMN=t(t+1)=t2+t+=(t)2+(0t2),a=0,当t=时,S有最大值,最大值为22、
23、(1)(1)如图所示见解析;(3)4+1【解析】(1)根据旋转的性质得出对应点位置,即可画出图形;(1)利用平移的性质得出对应点位置,进而得出图形;(3)根据ABC扫过的面积等于扇形BCC1的面积与A1BC1的面积和,列式进行计算即可【详解】(1)如图所示,A1BC1即为所求;(1)如图所示,A1B1C1即为所求;(3)由题可得,ABC扫过的面积=4+1【点睛】考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积23、(1)证明见解析;(2)能;BE=1或;(3)【解析】(1)证明:ABAC,B
24、C,ABCDEF,AEFB,又AEFCEMAECBBAE,CEMBAE,ABEECM;(2)能AEFBC,且AMEC,AMEAEF,AEAM;当AEEM时,则ABEECM,CEAB5,BEBCEC651,当AMEM时,则MAEMEA,MAEBAEMEACEM,即CABCEA,又CC,CAECBA,CE,BE6;BE1或;(3)解:设BEx,又ABEECM,即:,CM,AM5CM,当x3时,AM最短为,又当BEx3BC时,点E为BC的中点,AEBC,AE,此时,EFAC,EM,SAEM24、(1);(2);(3)【解析】试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;(2)
25、根据余切的定义得到ctan60=,然后把tan60=代入计算即可;(3)作AHBC于H,如图2,先在RtACH中利用余切的定义得到ctanC=2,则可设AH=x,CH=2x,BH=BCCH=202x,接着再在RtABH中利用勾股定理得到(202x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解解:(1)BC=3,AB=5,AC=4,ctanB=;(2)ctan60=;(3)作AHBC于H,如图2,在RtACH中,ctanC=2,设AH=x,则CH=2x,BH=BCCH=202x,在RtABH中,BH2+AH2=AB2,(202x)2+x2=102,解得x1=6,x2=10(舍去),BH=2026=8,cosB=考点:解直角三角形