2023届广东惠城区重点达标名校中考数学考前最后一卷含解析.doc

上传人:茅**** 文档编号:87784043 上传时间:2023-04-17 格式:DOC 页数:17 大小:593KB
返回 下载 相关 举报
2023届广东惠城区重点达标名校中考数学考前最后一卷含解析.doc_第1页
第1页 / 共17页
2023届广东惠城区重点达标名校中考数学考前最后一卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2023届广东惠城区重点达标名校中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广东惠城区重点达标名校中考数学考前最后一卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1计算8+3的结果是()A11B5C5D112如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与ABC相似的是ABCD3将三粒均匀的分别标有,的正六面体骰子同时掷出,朝上一面上的数字分别为,则,正好是直角三角形三边长的概率是()A

2、BCD4下列各数中,最小的数是 ABC0D5如图,甲从A点出发向北偏东70方向走到点B,乙从点A出发向南偏西15方向走到点C,则BAC的度数是()A85B105C125D1606二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)7如图,若ab,1=60,则2的度数为()A40B60C120D1508如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )A线段EF的长逐渐增长B线段EF的长逐渐减小C

3、线段EF的长始终不变D线段EF的长与点P的位置有关9如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()ABCD10如图,在O中,弦AB=CD,ABCD于点E,已知CEED=3,BE=1,则O的直径是()A2BC2D5二、填空题(本大题共6个小题,每小题3分,共18分)11如图,等腰ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则BEC的周长为

4、_12如图,已知RtABC中,B=90,A=60,AC=2+4,点M、N分别在线段AC、AB上,将ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当DCM为直角三角形时,折痕MN的长为_13抛物线(为非零实数)的顶点坐标为_.14在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_15若关于的不等式组无解, 则的取值范围是 _.16若代数式x26x+b可化为(x+a)25,则a+b的值为_三、解答题(共8题,共72分)17(8分)如图,已知O中,AB为弦,直线PO交O于点M、N,P

5、OAB于C,过点B作直径BD,连接AD、BM、AP(1)求证:PMAD;(2)若BAP=2M,求证:PA是O的切线;(3)若AD=6,tanM=,求O的直径18(8分)19(8分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离AD为1.5米,求小巷有多宽20(8分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A地时距地面的高度b

6、为 米若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式登山多长时间时,甲、乙两人距地面的高度差为50米?21(8分)在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,C=90,AC=3,BC=4.(1)试在图中作出ABC以A为旋转中心,沿顺时针方向旋转90后的图形AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.22(10分)如图,曲线BC是反比例函数y(4x6

7、)的一部分,其中B(4,1m),C(6,m),抛物线yx2+2bx的顶点记作A(1)求k的值(2)判断点A是否可与点B重合;(3)若抛物线与BC有交点,求b的取值范围23(12分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30方向上求APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?24如图,半圆O的直径AB5cm,点M在AB上且AM1cm,点P是半圆O上的动点,过点B作BQPM交PM(

8、或PM的延长线)于点Q设PMxcm,BQycm(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm11.522.533.54y/cm03.7_3.83.32.5_(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60时,PM的长度约为_cm参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】绝对值不等的异号加法,取绝对值较大的

9、加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1依此即可求解【详解】解:832故选B【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1从而确定用那一条法则在应用过程中,要牢记“先符号,后绝对值”2、B【解析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为、2、只有选项B的各边为1、与它的各边对应成比例故选B【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.3、C【解析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能

10、构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.边长为3,4,5的三角形组成直角三角形.4、A【解析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答【详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A【点睛

11、】此题考负数的大小比较,应理解数字大的负数反而小5、C【解析】首先求得AB与正东方向的夹角的度数,即可求解【详解】根据题意得:BAC(9070)+15+90125,故选:C【点睛】本题考查了方向角,正确理解方向角的定义是关键6、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质7、C【解析】如图:1=60,3=1=60,又ab,2+3=180,2=120,故选C.点睛:本题考查了

12、平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.8、C【解析】试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,故选C考点:1、矩形性质,2、勾股定理,3、三角形的中位线9、A【解析】根据题意找到等量关系:矩形面积+三角形面积阴影面积30;(矩形面积阴影面积)(三角形面积阴影面积)4,据此列出方程组【详解】依题意得:故选A【点睛】考查了由实际问题抽象出二元一次方程组根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键

13、性词语,找出等量关系,列出方程组10、C【解析】作OHAB于H,OGCD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可【详解】解:作OHAB于H,OGCD于G,连接OA,由相交弦定理得,CEED=EABE,即EA1=3,解得,AE=3,AB=4,OHAB,AH=HB=2,AB=CD,CEED=3,CD=4,OGCD,EG=1,由题意得,四边形HEGO是矩形,OH=EG=1,由勾股定理得,OA=,O的直径为,故选C【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键二、填空题(本大题共6个小题,每小题

14、3分,共18分)11、3【解析】试题分析:因为等腰ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3考点:3等腰三角形的性质;3垂直平分线的性质12、或【解析】分析:依据DCM为直角三角形,需要分两种情况进行讨论:当CDM=90时,CDM是直角三角形;当CMD=90时,CDM是直角三角形,分别依据含30角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长详解:分两种情况:如图,当CDM=90时,CDM是直角三角形,在RtABC中,B=90,A=60,AC=2+4,

15、C=30,AB=AC=+2,由折叠可得,MDN=A=60,BDN=30,BN=DN=AN,BN=AB=,AN=2BN=,DNB=60,ANM=DNM=60,AMN=60,AN=MN=;如图,当CMD=90时,CDM是直角三角形,由题可得,CDM=60,A=MDN=60,BDN=60,BND=30,BD=DN=AN,BN=BD,又AB=+2,AN=2,BN=,过N作NHAM于H,则ANH=30,AH=AN=1,HN=,由折叠可得,AMN=DMN=45,MNH是等腰直角三角形,HM=HN=,MN=,故答案为:或点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键折叠

16、是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等13、【解析】【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.【详解】y=mx2+2mx+1=m(x2+2x)+1=m(x2+2x+1-1)+1=m(x+1)2 +1-m,所以抛物线的顶点坐标为(-1,1-m),故答案为(-1,1-m).【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.14、(-1, -6)【解析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案【详解】点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,A1(-1,-

17、2),将点A1向下平移4个单位,得到点A2,点A2的坐标是:(-1,-6)故答案为:(-1, -6)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数15、【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得【详解】,解得:xa+3,解得:x1根据题意得:a+31,解得:a-2故答案是:a-2【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤.16、1【解析】根据题意找到等量关

18、系x26x+b=(x+a)25,根据系数相等求出a,b,即可解题.【详解】解:由题可知x26x+b=(x+a)25,整理得:x26x+b= x2+2ax+a2-5,即-6=2a,b= a2-5,解得:a=-3,b=4,a+b=1.【点睛】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键.三、解答题(共8题,共72分)17、(1)证明见解析;(2)证明见解析;(3)1;【解析】(1)根据平行线的判定求出即可;(2)连接OA,求出OAP=BAP+OAB=BOC+OBC=90,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出M

19、N=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可【详解】(1)BD是直径,DAB=90,POAB,DAB=MCB=90,PMAD;(2)连接OA,OB=OM,M=OBM,BON=2M,BAP=2M,BON=BAP,POAB,ACO=90,AON+OAC=90,OA=OB,BON=AON,BAP=AON,BAP+OAC=90,OAP=90,OA是半径,PA是O的切线;(3)连接BN,则MBN=90tanM=,=,设BC=x,CM=2x,MN是O直径,NMAB,MBN=BCN=BCM=90,NBC=M=90BNC,MBCB

20、NC,BC2=NCMC,NC=x,MN=2x+x=2.1x,OM=MN=1.21x,OC=2x1.21x=0.71x,O是BD的中点,C是AB的中点,AD=6,OC=0.71x=AD=3,解得:x=4,MO=1.21x=1.214=1,O的半径为1【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度18、2x2【解析】分别解不等式,进而得出不等式组的解集【详解】解得:x2解得:x2故不等式组的解集为:2x2【点睛】本题主要考查了解一元一次不等式组,正确掌握不等式组的解法是解题的关键19、2.7米【解析】先根据勾

21、股定理求出AB的长,同理可得出BD的长,进而可得出结论【详解】在RtACB中,ACB90,BC0.7米,AC2.2米,AB20.72+2.226.1在RtABD中,ADB90,AD1.5米,BD2+AD2AB2,BD2+1.526.1,BD22BD0,BD2米CDBC+BD0.7+22.7米答:小巷的宽度CD为2.7米【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用20、(1)10,30;(2)y=;(3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面

22、的高度差为50米【解析】(1)根据速度=高度时间即可算出甲登山上升的速度;根据高度=速度时间即可算出乙在A地时距地面的高度b的值;(2)分0x2和x2两种情况,根据高度=初始高度+速度时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值综上即可得出结论【详解】(1)(300100)20=10(米/分钟),b=1512=30,故答案为10,30;(2)当0x2时,y=15x;当x2

23、时,y=30+103(x2)=30x30,当y=30x30=300时,x=11,乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0x20)当10x+100(30x30)=50时,解得:x=4,当30x30(10x+100)=50时,解得:x=9,当300(10x+100)=50时,解得:x=15,答:登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=

24、初始高度+速度时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程21、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).【解析】(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;(2)根据点B的坐标画出平面直角坐标系;(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.【详解】(1)A如图所示;(2)如图所示,A(0,1),C(3,1);(3)如图所示,(3,5),(3,1)22、(1)12;(2)点A不与点B重合;(3)【解析】(1)

25、把B、C两点代入解析式,得到k4(1m)6(m),求得m2,从而求得k的值;(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b4,且b23,显然不成立;(3)当抛物线经过点B(4,3)时,解得,b ,抛物线右半支经过点B;当抛物线经过点C,解得,b,抛物线右半支经过点C;从而求得b的取值范围为b【详解】解:(1)B(4,1m),C(6,m)在反比例函数 的图象上,k4(1m)6(m),解得m2,k41(2)12;(2)m2,B(4,3),抛物线yx2+2bx(xb)2+b2,A(b,b2)若点A与点B重合,则有b4,且b23,显然不成立,点A不与点B重合;(3)当抛物线经过

26、点B(4,3)时,有342+2b4,解得,b, 显然抛物线右半支经过点B;当抛物线经过点C(6,2)时,有262+2b6,解得,b,这时仍然是抛物线右半支经过点C,b的取值范围为b【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题23、(1)30;(2)海监船继续向正东方向航行是安全的【解析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PHAB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在APB中,PAB=30,ABP=120APB=180-30-120=30(2)过点P作PHAB于点H 在RtAP

27、H中,PAH=30,AH=PH在RtBPH中,PBH=30,BH=PHAB=AH-BH=PH=50解得PH=2525,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形24、(1)4,1;(2)见解析;(3)1.1或3.2【解析】(1)当x=2时,PMAB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1(2)利用描点法画出函数图象即可;(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;【详解】(1)当x2时,PMAB,此时Q与M重合,BQBM4,当x4时,点P与B重合,此时BQ1故答案为4,1(2)函数图象如图所示:(3)如图,在RtBQM中,Q91,MBQ61,BMQ31,BQBM2,观察图象可知y2时,对应的x的值为1.1或3.2故答案为1.1或3.2【点睛】本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁