2023届山东省青岛市李沧区重点名校中考数学考试模拟冲刺卷含解析.doc

上传人:茅**** 文档编号:87783973 上传时间:2023-04-17 格式:DOC 页数:22 大小:1.13MB
返回 下载 相关 举报
2023届山东省青岛市李沧区重点名校中考数学考试模拟冲刺卷含解析.doc_第1页
第1页 / 共22页
2023届山东省青岛市李沧区重点名校中考数学考试模拟冲刺卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2023届山东省青岛市李沧区重点名校中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省青岛市李沧区重点名校中考数学考试模拟冲刺卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各数中,为无理数的是()ABCD2计算4(9)的结果等于A32B32C36D363已知直线mn,将一块含30角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若125,则2的度数是()A25B30C35D554有三张

2、正面分别标有数字2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )ABCD5下列关于统计与概率的知识说法正确的是()A武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B检测100只灯泡的质量情况适宜采用抽样调查C了解北京市人均月收入的大致情况,适宜采用全面普查D甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数6下列运算正确的是()Aaa2a2B(ab)2abC31D7在一个不透明的袋子中装有除

3、颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( )A5B10C15D2082017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为()A7.49107B74.9106C7.49106D0.7491079如图,在等腰直角三角形ABC中,C=90,D为BC的中点,将ABC

4、折叠,使点A与点D重合,EF为折痕,则sinBED的值是( )ABCD10如图是某几何体的三视图,下列判断正确的是( )A几何体是圆柱体,高为2B几何体是圆锥体,高为2C几何体是圆柱体,半径为2D几何体是圆锥体,直径为211如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y与t的函数图象如图2,则下列结论错误的是( )AAE=6cmBC当0t10时,D当t=12s时,PBQ是等腰三角形12如果一组数据1、2、x、5、6的众数

5、是6,则这组数据的中位数是( )A1B2C5D6二、填空题:(本大题共6个小题,每小题4分,共24分)13二次函数y=x2-2x+1的对称轴方程是x=_.14如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_米15抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为_1664的立方根是_17如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则APB=_ .18如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应

6、写出文字说明、证明过程或演算步骤19(6分)已知:如图,在半径是4的O中,AB、CD是两条直径,M是OB的中点,CM的延长线交O于点E,且EMMC,连接DE,DE=(1)求证:AMCEMB;(2)求EM的长;(3)求sinEOB的值20(6分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD80cm,宽AB48cm,小强身高166cm,下半身FG100cm,洗漱时下半身与地面成80(FGK80),身体前倾成125(EFG125),脚与洗漱台距离GC15cm(点D,C,G,K在同一直线上)(cos800.17,sin800.98,1.414)(1)此时小强头部E点与地面DK相

7、距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?21(6分)如图,B、E、C、F在同一直线上,ABDE,BECF,BDEF,求证:ACDF22(8分)已知:如图所示,抛物线y=x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0)(1)求抛物线的表达式;(2)设点P在该抛物线上滑动,且满足条件SPAB=1的点P有几个?并求出所有点P的坐标23(8分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,EAF=45,试判断BE,EF,FD之间的数量关系小聪把ABE绕点A逆时针旋转90至ADG,通过证明AEFAGF;从而发现并证明了EF=

8、BE+FD【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,EAF=45,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,BAC=90,AB=AC,点E、F在边BC上,且EAF=45,若BE=3,EF=5,求CF的长24(10分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧)()求点、点的坐标;()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点求证:点是这个新抛物线与直线的唯一交点;将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的

9、速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围25(10分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转度(0180)(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围26(12分)如图1,直角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一

10、点,以BD为直径作M,M交AB于点Q当M与y轴相切时,sinBOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OBA交于点E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标27(12分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当ACAB

11、时,求证:k为定值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】A=2,是有理数;B=2,是有理数;C,是有理数;D,是无理数,故选D.2、D【解析】根据有理数的乘法法则进行计算即可.【详解】 故选:D.【点睛】考查有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.3、C【解析】根据平行线的性质即可得到3的度数,再根据三角形内角和定理,即可得到结论【详解】解:直线mn,3125,又三角板中,ABC60,2602535,故选C【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键4、C【解析】

12、画树状图得:共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】运用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件5、B【解析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调

13、查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件方差越小波动越小6、C【解析】根据同底数幂的乘法法则对A进行判断;根据积的乘

14、方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断【详解】解:A、原式a3,所以A选项错误;B、原式a2b2,所以B选项错误;C、原式,所以C选项正确;D、原式2,所以D选项错误故选:C【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变也考查了整式的运算7、B【解析】由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.【详解】解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,故选择B.【点睛】本题考查了概率

15、公式的应用.8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】7490000=7.49106.故选C.【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=

16、x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A10、A【解析】试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,再根据左视图的高度得出圆柱体的高为2;故选A考点:由三视图判断几何体11、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=ADED=BCED=104=6cm(2)结论B正确,理由如下:如图,连接EC,过点E作EFBC于点F,由函数图象可知,BC=BE=10cm,EF=1(3)结论C正

17、确,理由如下:如图,过点P作PGBQ于点G,BQ=BP=t,(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC此时AN=1,ND=2,由勾股定理求得:NB=,NC=BC=10,BCN不是等腰三角形,即此时PBQ不是等腰三角形故选D12、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案详解:数据1,2,x,5,6的众数为6,x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排

18、列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】利用公式法可求二次函数y=x2-2x+1的对称轴也可用配方法【详解】-=-=1,x=1故答案为:1【点睛】本题考查二次函数基本性质中的对称轴公式;也可用配方法解决14、6.4【解析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.15、【解析】根据概率的计算方法求

19、解即可.【详解】第4次抛掷一枚均匀的硬币时,正面和反面朝上的概率相等,第4次正面朝上的概率为.故答案为:.【点睛】此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=16、4.【解析】根据立方根的定义即可求解.【详解】43=64,64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.17、【解析】通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解APB【详解】把PAB绕B点顺时针旋转90,得PBC,则PABPBC,设PA

20、=x,PB=2x,PC=3x,连PP,得等腰直角PBP,PP2=(2x)2+(2x)2=8x2,PPB=45又PC2=PP2+PC2,得PPC=90故APB=CPB=45+90=135故答案为135【点睛】本题考查的是正方形四边相等的性质,考查直角三角形中勾股定理的运用,把PAB顺时针旋转90使得A与C点重合是解题的关键18、【解析】先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-10;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=的图象经过一、三象限,k0,从而可以求出k的取值范围【详解】y=(k-1)x的函数值y随x的增大而减小,k-10k1而y=(

21、k-1)x的图象与反比例函数y=的图象没有公共点,k0综合以上可知:0k1故答案为0k1【点睛】本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)EM=4;(3)sinEOB=【解析】(1)连接A、C,E、B点,那么只需要求出AMC和EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得AMCEMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;

22、(3)过点E作EFAB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出RtEOF各边的长度,根据锐角三角函数的定义,便可求得sinEOB的值【详解】(1)证明:连接AC、EB,如图1,A=BEC,B=ACM,AMCEMB;(2)解:DC是O的直径,DEC=90,DE2+EC2=DC2,DE=,CD=8,且EC为正数,EC=7,M为OB的中点,BM=2,AM=6,AMBM=EMCM=EM(ECEM)=EM(7EM)=12,且EMMC,EM=4;(3)解:过点E作EFAB,垂足为点F,如图2,OE=4,EM=4,OE=EM,OF=FM=1,EF=,sinEOB=

23、【点睛】本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.20、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F作FNDK于N,过点E作EMFN于M求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FGK=80,FN=100sin8098,EFG=125,EFM=18012510=45,FM=66cos45=4

24、6.53,MN=FN+FM144.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=66sin4546.53,PH46.53,GN=100cos8017,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前9.5cm21、见解析【解析】由BECF可得BCEF,即可判定,再利用全等三角形的性质证明即可【详解】BECF,即BCEF,又ABDE,BDEF,在与中,ACDF【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.

25、22、 (1)y=x2+4x3;(2)满足条件的P点坐标有3个,它们是(2,1)或(2+,1)或(2,1)【解析】(1)由于已知抛物线与x轴的交点坐标,则可利用交点式求出抛物线解析式;(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到 2|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标.【详解】解:(1)抛物线解析式为y=(x1)(x3)=x2+4x3;(2)设P(t,t2+4t3),因为SPAB=1,AB=31=2,所以2|t2+4t3|=1,当t2+4t3=1时,t1=t2=2,此时P点坐标为(2,1);当

26、t2+4t3=1时,t1=2+,t2=2,此时P点坐标为(2+,1)或(2,1),所以满足条件的P点坐标有3个,它们是(2,1)或(2+,1)或(2,1)【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.23、(1)DF=EF+BE理由见解析;(2)CF=1【解析】(1)把ABE绕点A逆时针旋转90

27、至ADG,可使AB与AD重合,证出AEFAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE理由:如图1所示,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,ADC=ABE=90,点C、D、G在一条直线上,EB=DG,AE=AG,EAB=GAD,BAG+GAD=90,EAG=BAD=90,EAF=15,FAG=EAGE

28、AF=9015=15,EAF=GAF,在EAF和GAF中,EAFGAF,EF=FG,FD=FG+DG,DF=EF+BE;(2)BAC=90,AB=AC,将ABE绕点A顺时针旋转90得ACG,连接FG,如图2,AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,FG2=FC2+CG2=BE2+FC2;又EAF=15,而EAG=90,GAF=9015,在AGF与AEF中,AEFAGF,EF=FG,CF2=EF2BE2=5232=16,CF=1“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此

29、题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫24、(1)B(3,0),C(1,0);(2)见解析;t6.【解析】(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y0,即可得解;(2)根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;当t0时,直线与抛物线只有一个交点N(3,6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 t,0),代入直线解析式:y4x6t,解得t;最后一个交点是B(3t,0),代入y4x6t,解得t6,所以t6.【详解】(1)因为抛物线的顶点为M(1,2),所以对称轴为x1,可得:,解得:a,

30、c,所以抛物线解析式为yx2x,令y0,解得x1或x3,所以B(3,0),C(1,0);(2)翻折后的解析式为yx2x,与直线y4x6联立可得:x23x0,解得:x1x23,所以该一元二次方程只有一个根,所以点N(3,6)是唯一的交点;t6.【点睛】本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.25、(2)AM=;(2)=;(3)4-d4或d=4+【解析】(2)连接BM,则BMA=90,在RtABC中,利用勾股定理可求出AC的长度,由B=BMA=90、BCA=MAB可得出ABCAMB,根据相似三角形的性质可求出AM的长度; (2)连接OP、ON,过点O作OGAD于点G,

31、则四边形DGON为矩形,进而可得出DG、AG的长度,在RtAGO中,由AO=2、AG=2可得出OAG=60,进而可得出AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长; (3)由(2)可知:AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B在直线CD上的图形,在RtABD中(点B在点D左边),利用勾股定理可求出BD的长度进而可得出CB的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围【详解】(2)在图2中,连接BM,则BMA=90在RtABC中,AB=4,BC=3,AC=2B=BMA=90,BCA=MAB,ABCAMB,=,

32、即=,AM=;(2)在图3中,连接OP、ON,过点O作OGAD于点G,半圆与直线CD相切,ONDN,四边形DGON为矩形,DG=ON=2,AG=AD-DG=2在RtAGO中,AGO=90,AO=2,AG=2,AOG=30,OAG=60又OA=OP,AOP为等边三角形,=(3)由(2)可知:AOP为等边三角形,DN=GO=OA=,CN=CD+DN=4+当点B在直线CD上时,如图4所示,在RtABD中(点B在点D左边),AB=4,AD=3,BD=,CB=4-AB为直径,ADB=90,当点B在点D右边时,半圆交直线CD于点D、B当半圆弧与直线CD只有一个交点时,4-d4或d=4+【点睛】本题考查了相

33、似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出OAG=60;(3)依照题意画出图形,利用数形结合求出d的取值范围26、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MNOC设圆的半径为r,则MN=MB=

34、MD=r在RtBHD中运用勾股定理可求出r=2,从而得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH OA=6,BC=2,AH=0AO

35、H=OABC=62=4 BHA=90,BAO=45,tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD BD是M的直径,BGD=90,即

36、DGAB,BG=AG GFOA,BDOA,GFBD,AFGADB,=,AF=AD=2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB=4 DEOC,BDEBCO,=,

37、DE=2,EP=2,点E的坐标为(4,2) 当BED=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,OD=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO=45 在RtDBE中,cosBED=,DE=BE,t=t

38、2)=2t4 解得:t=4,OP=4,PE=64=2,点E的坐标为(4,2) 综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2) 点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性27、 (1) 1x3或x0;(2)证明见解析.【解析】(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;再根据图像直接写出不等式的解集;(2)过A作lx轴,过C作CGl于G,过B作BHl于H, AGCBHA, 设B(m, )、C(n, ),根据对应线段成比例即可得出mn=9,联立,得,根据根与系数的关系得,由此得出为定值.【详解】解:(1)将B(3,1)代入,m=3, ,将B(3,1)代入,,不等式的解集为1x3或x0(2)过A作lx轴,过C作CGl于G,过B作BHl于H,则AGCBHA,设B(m, )、C(n, ), , , mn=9,联立, ,为定值.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁