《山东省青岛市胶州市重点名校2023届中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省青岛市胶州市重点名校2023届中考数学最后冲刺模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( )A5B10C15D202如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()ABC50D503关于x
3、的一元一次不等式2的解集为x4,则m的值为( )A14B7C2D24方程的解是( ).ABCD5如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:ac1;a+b=1;4acb2=4a;a+b+c1其中正确结论的个数是()A1 B2 C3 D46左下图是一些完全相同的小正方体搭成的几何体的三视图 这个几何体只能是( )ABCD7如图图形中,可以看作中心对称图形的是()ABCD8若关于的一元二次方程的一个根是0,则的值是( )A1B-1C1或-1D9若代数式在实数范围内有意义,则x的取值范围是( )ABCD10如果将抛物线向右平移1个单位,那么所得的抛物线的
4、表达式是ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_12已知函数是关于的二次函数,则_13如图,等腰ABC中,AB=AC,DBC=15,AB的垂直平分线MN交AC于点D,则A的度数是 14如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,按此规律继续下去,则矩形ABnCnCn-1的面积为_15=_16
5、如果分式的值为0,那么x的值为_三、解答题(共8题,共72分)17(8分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.18(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用19(8分)已知关于x的一元二次方程3x26x+1k=0有实数根
6、,k为负整数求k的值;如果这个方程有两个整数根,求出它的根20(8分)如图,BD是矩形ABCD的一条对角线(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF21(8分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形22(10分)如图1,已知直线y=kx与抛物线y=交于点A(3,6)(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于
7、点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足BAE=BED=AOD继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?23(12分)列方程解应用题:某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元该商场第一批购进衬衫多少件?商场销售这种衬衫
8、时,每件定价都是58元,剩至150件时按八折出售,全部售完售完这两批衬衫,商场共盈利多少元?24如图,ABC是等腰三角形,ABAC,点D是AB上一点,过点D作DEBC交BC于点E,交CA延长线于点F证明:ADF是等腰三角形;若B60,BD4,AD2,求EC的长,参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.【详解】解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,故选择B.【点睛】本题考查了概率公式的应用.2、A【解析】根据新定义得到扇形的弧长为5,然后根据扇形的面积
9、公式求解【详解】解:圆锥的侧面积=55=故选A【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长3、D【解析】解不等式得到xm+3,再列出关于m的不等式求解.【详解】1,m1x6,1xm6,xm+3,关于x的一元一次不等式1的解集为x4,m+3=4,解得m=1故选D考点:不等式的解集4、B【解析】直接解分式方程,注意要验根.【详解】解:=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=,经检验,x=是原方程的解.故选B.【点睛】本题考查了解分式方程,解分式方程不要忘记验根.5、C
10、【解析】根据图象知道:a1,c1,ac1,故正确;顶点坐标为(1/2 ,1),x=-b/2a =1/2 ,a+b=1,故正确;根据图象知道:x=1时,y=a+b+c1,故错误;顶点坐标为(1/2 ,1),=1,4ac-b2=4a,故正确其中正确的是故选C6、A【解析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A考点:几何体的三视图7、D【解析】根据 把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心
11、对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义8、B【解析】根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可【详解】把x=0代入方程得,解得a=1原方程是一元二次方程,所以,所以,故故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解9、D【解析】试题解析:要使分式有意义,则1-x0,解得:x1故选D10、D【解析】本题主要考查二次函数的解析式【详解】解:根据二次函数的解析式形式
12、可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.故选D.【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.二、填空题(本大题共6个小题,每小题3分,共18分)11、9.261011【解析】试题解析: 9260亿=9.261011故答案为: 9.261011点睛: 科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是
13、正数;当原数的绝对值小于1时,n是负数12、1【解析】根据一元二次方程的定义可得:,且,求解即可得出m的值【详解】解:由题意得:,且,解得:,且,故答案为:1【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”13、50【解析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得A=ABD,然后表示出ABC,再根据等腰三角形两底角相等可得C=ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】MN是AB的垂直平分线,AD=BD. A=ABD.DBC=15,ABC=A+15.AB=AC,C=ABC=A+15.A+A
14、+15+A+15=180,解得A=50故答案为5014、或【解析】试题分析:AC=,因为矩形都相似,且每相邻两个矩形的相似比=,=21=2,=,=,=故答案为考点:1相似多边形的性质;2勾股定理;3规律型;4矩形的性质;5综合题15、2;【解析】试题解析:先求-2的平方4,再求它的算术平方根,即:.16、4【解析】,x-4=0,x+20,解得:x=4,故答案为4.三、解答题(共8题,共72分)17、(1)y=-y=x-1(1)x2【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1), 点A(5,2),点B(2,3), 又点C在y轴负半轴,点D在第二象限,点C的坐
15、标为(2,-1),点D的坐标为(-1,3)点在反比例函数y=的图象上, 反比例函数的表达式为 将A(5,2)、B(2,-1)代入y=kx+b,解得: 一次函数的表达式为(1)将代入,整理得: 一次函数图象与反比例函数图象无交点观察图形,可知:当x2时,反比例函数图象在一次函数图象上方,不等式kx+b的解集为x2点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点18、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7
16、500元【解析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得【详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:,解得:,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100a)棵,根据题意,得:100aa,解得:a50,设购买总费用为W,则W=50a+100(100a)=50a+100
17、00,W随a的增大而减小,当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元考点:一元一次不等式的应用;二元一次方程组的应用.19、(2)k=2,2(2)方程的根为x2=x2=2【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值【详解】解:(2)根据题意,得=(6)243(2k)0,解得 k2k为负整数,k=2,2(2)当k=2时,不符合题意,舍去; 当k=2时,符合题意,此时方程的根为
18、x2=x2=2【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:(2)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根也考查了一元二次方程的解法20、(1)作图见解析;(2)证明见解析;【解析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得DEOBFO即可证得结论【详解】解:(1)如图:(2)四边形ABCD为矩形,ADBC,ADB=CBD,EF垂直平分线段BD,BO=DO,在DEO和三角形BFO中,DEOBFO(AS
19、A),DE=BF考点:1作图基本作图;2线段垂直平分线的性质;3矩形的性质21、见解析【解析】(1)根据平行四边形的性质可得ABDC,OB=OD,由平行线的性质可得OBE=ODF,利用ASA判定BOEDOF,由全等三角形的性质可得EO=FO,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF是平行四边形;(2)添加EFBD(本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF为菱形【详解】(1)四边形ABCD是平行四边形,O是BD的中点,ABDC,OB=OD,OBE=ODF,又BOE=DOF,BOEDOF(ASA),EO=FO,四边形BEDF是平行四
20、边形;(2)EFBD四边形BEDF是平行四边形,EFBD,平行四边形BEDF是菱形【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.22、(1)y=2x,OA=,(2)是一个定值,(3)当时,E点只有1个,当时,E点有2个。【解析】(1)把点A(3,6)代入y=kx 得;6=3k,k=2,y=2xOA=(2)是一个定值,理由如下:如答图1,过点Q作QGy轴于点G,QHx轴于点H当QH与QM重合时,显然QG与QN重合,此时;当QH与QM不重合时,QNQM,QGQH不妨设点H,G分别在x、y轴的正半轴上,MQH=GQN,又QHM=QG
21、N=90QHMQGN(5分),当点P、Q在抛物线和直线上不同位置时,同理可得如答图2,延长AB交x轴于点F,过点F作FCOA于点C,过点A作ARx轴于点RAOD=BAE,AF=OF,OC=AC=OA=ARO=FCO=90,AOR=FOC,AORFOC,OF=,点F(,0),设点B(x,),过点B作BKAR于点K,则AKBARF,即,解得x1=6,x2=3(舍去),点B(6,2),BK=63=3,AK=62=4,AB=5 (求AB也可采用下面的方法)设直线AF为y=kx+b(k0)把点A(3,6),点F(,0)代入得k=,b=10,(舍去),B(6,2),AB=5在ABE与OED中BAE=BED
22、,ABE+AEB=DEO+AEB,ABE=DEO,BAE=EOD,ABEOED.设OE=x,则AE=x (),由ABEOED得,()顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个当时,E点只有1个当时,E点有2个23、(1)2000件;(2)90260元【解析】(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)用(1)的结论2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论【详解】解:(
23、1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据题意得:-=4,解得:x=2000,经检验,x=2000是所列分式方程的解,且符合题意答:商场第一批购进衬衫2000件(2)20002=4000(件),(2000+4000-150)58+150580.8-80000-176000=90260(元)答:售完这两批衬衫,商场共盈利90260元【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算24、(1)见解析;(2)EC1【解析】(1)由ABAC,可知BC,再由DEBC,可知F+C90,BDE+B90,然后余角的性质可推出FBDE,再根据对顶角相等进行等量代换即可推出FFDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论【详解】(1)ABAC,BC,FEBC,F+C90,BDE+B90,FBDE,而BDEFDA,FFDA,AFAD,ADF是等腰三角形;(2)DEBC,DEB90,B60,BD1,BEBD2,ABAC,ABC是等边三角形,BCABAD+BD6,ECBCBE1【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出FFDA,即可推出结论