《2023届广西桂林市临桂县中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届广西桂林市临桂县中考三模数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,四边形ABCD内接于O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC若ABC=105,BAC=25,则E的度数为( )A45B50C55D602若是关于x的方程的一个根,则方程的另一个根是( )A9B4C4D33如图,四边形ABCD中,ADBC,B=90,E为AB上一点,分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处若AD=3,BC=5,则EF的值是()AB2CD24如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A左、右两
3、个几何体的主视图相同B左、右两个几何体的左视图相同C左、右两个几何体的俯视图不相同D左、右两个几何体的三视图不相同5已知x2y=3,那么代数式32x+4y的值是( )A3B0C6D96如图,在五边形ABCDE中,A+B+E=300,DP,CP分别平分EDC、BCD,则P的度数是( )A60B65C55D507如图,O与直线l1相离,圆心O到直线l1的距离OB2,OA4,将直线l1绕点A逆时针旋转30后得到的直线l2刚好与O相切于点C,则OC( )A1B2C3D48若关于x的不等式组无解,则m的取值范围()Am3Bm3Cm3Dm39已知,则的值为ABCD10如图,一把矩形直尺沿直线断开并错位,点
4、E、D、B、F在同一条直线上,若ADE125,则DBC的度数为( )A125B75C65D55二、填空题(本大题共6个小题,每小题3分,共18分)11如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_.12如图,D,E分别是ABC的边AB、BC上的点,且DEAC,AE、CD相交于点O,若SDOE:SCOA=1:16,则SBDE与SCDE的比是_13如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角AMB为22.5,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A的俯角ANB为45,则
5、电视塔AB的高度为_米(结果保留根号)14如果m,n互为相反数,那么|m+n2016|=_15从2,1,2这三个数中任取两个不同的数相乘,积为正数的概率是_16分解因式:x24=_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,OAOB,ABx轴于点C,点A(,1)在反比例函数的图象上求反比例函数的表达式;在x轴的负半轴上存在一点P,使得SAOP=SAOB,求点P的坐标;若将BOA绕点B按逆时针方向旋转60得到BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由18(8分)阅读与应用:阅读1:a、b为实数,且a0,b0,因为,所以,从而(当ab时取等号
6、)阅读2:函数(常数m0,x0),由阅读1结论可知: ,所以当即时,函数的最小值为阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x_时,周长的最小值为_问题2:已知函数y1x1(x1)与函数y2x22x17(x1),当x_时, 的最小值为_问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用其中,其他费用与学生人数的平方成正比,比例系数为0.1当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入支出总费用学生人数)19(8分)我们常用的数是十进制数,
7、如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?20(8分)如图,一次函数的图象与反比例函数的图象交于,B两点(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围21(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)
8、按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22(10分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC(1)设ONP,求AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明23(12分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可
9、比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)24如图1,点和矩形的边都在直线上,以点为圆心,以24为半径作半圆,分别交直线于两点.已知: ,矩形自右向左在直线上平移,当点到达点时,矩形停止运动.在平移过程中,设矩形对角线与半圆的交点为 (点为半圆上远离点的交点).如图2,若与半圆相切,求的值;如图3,当与半圆有两个交点时,求线段的取值范围;若线段的长为20,直接写出此时的值. 参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】先根据圆内接四边形的性质求出ADC的度数,再由圆周角定理得出DCE的度数,根据三角形外角的性质即可得出结论【
10、详解】四边形ABCD内接于O,ABC=105,ADC=180ABC=180105=75,BAC=25,DCE=BAC=25,E=ADCDCE=7525=50【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.2、D【解析】解:设方程的另一个根为a,由一元二次方程根与系数的故选可得,解得a=,故选D.3、A【解析】试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DHBC于H,由于ADBC
11、,B=90,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BCBH=BCAD=2,然后在RtDHC中,利用勾股定理计算出DH=2,所以EF=解:分别以ED,EC为折痕将两个角(A,B)向内折起,点A,B恰好落在CD边的点F处,EA=EF,BE=EF,DF=AD=3,CF=CB=5,AB=2EF,DC=DF+CF=8,作DHBC于H,ADBC,B=90,四边形ABHD为矩形,DH=AB=2EF,HC=BCBH=BCAD=53=2,在RtDHC中,DH=2,EF=DH=故选A点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和
12、对应角相等也考查了勾股定理4、B【解析】直接利用已知几何体分别得出三视图进而分析得出答案【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键5、A【解析】解:x2y=3,32x+4y=32(x2y)=323=3;故选A6、A【解析】试题分析:根据五边形的内角和等于540,由A+B+E=300,可求BCD+CDE的度数,再根据角平分线的定义可得PDC与PCD的角度和,进一步求得P的度数解:五边形
13、的内角和等于540,A+B+E=300,BCD+CDE=540300=240,BCD、CDE的平分线在五边形内相交于点O,PDC+PCD=(BCD+CDE)=120,P=180120=60故选A考点:多边形内角与外角;三角形内角和定理7、B【解析】先利用三角函数计算出OAB60,再根据旋转的性质得CAB30,根据切线的性质得OCAC,从而得到OAC30,然后根据含30度的直角三角形三边的关系可得到OC的长【详解】解:在RtABO中,sinOAB,OAB60,直线l1绕点A逆时针旋转30后得到的直线l1刚好与O相切于点C,CAB30,OCAC,OAC603030,在RtOAC中,OCOA1故选B
14、【点睛】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d,则直线l和O相交dr;直线l和O相切dr;直线l和O相离dr也考查了旋转的性质8、C【解析】根据“大大小小找不着”可得不等式2+m2m-1,即可得出m的取值范围【详解】 ,由得:x2+m,由得:x2m1,不等式组无解,2+m2m1,m3,故选C【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键9、C【解析】由题意得,4x0,x40,解得x=4,则y=3,则=,故选:C. 10、D【解析】延长CB,根据平行线的性质求得1的度数,则DBC即可求得【详解】延长CB,延长CB,ADCB,
15、1=ADE=145,DBC=1801=180125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、xx75.【解析】试题解析:设长方形墙砖的长为x厘米,可得:xx75.12、1:3【解析】根据相似三角形的判定,由DEAC,可知DOECOA,BDEBCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.故答案为1:3.13、【解析】解:如图,连接AN,由题意知,B
16、MAA,BA=BA,AN=AN,ANB=ANB=45,AMB=22.5,MAN=ANBAMB=22.5=AMN,AN=MN=200米,在RtABN中,ANB=45,AB=AN=(米),故答案为点睛:此题是解直角三角形的应用仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出ANB=4514、1【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n1|,m,n互为相反数,m+n=0,|m+n1|=|1|=1;故答案为1考点:1.绝对值的意义;2.相反数的性质.15、 【解析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率
17、公式求解即可求得答案【详解】列表如下:212224122242由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故答案为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比16、(x+2)(x2)【解析】【分析】直接利用平方差公式进行因式分解即可【详解】x24=x2-22=(x+2)(x2),故答案为:(x+2)(x2)【点睛】本题考查了平方差公式因式分解能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反三、解答题
18、(共8题,共72分)17、(1);(2)P(,0);(3)E(,1),在【解析】(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,3),计算求出SAOB=4=则SAOP=SAOB=设点P的坐标为(m,0),列出方程求解即可;(3)先解OAB,得出ABO=30,再根据旋转的性质求出E点坐标为(,1),即可求解【详解】(1)点A(,1)在反比例函数的图象上,k=1=,反比例函数的表达式为;(2)A(,1),ABx轴于点C,OC=,AC=1,由射影定理得=ACBC,可得BC=3,B(,3),SAOB=4=,SAOP=SAOB=设点P的坐标为
19、(m,0),|m|1=,|m|=,P是x轴的负半轴上的点,m=,点P的坐标为(,0);(3)点E在该反比例函数的图象上,理由如下:OAOB,OA=2,OB=,AB=4,sinABO=,ABO=30,将BOA绕点B按逆时针方向旋转60得到BDE,BOABDE,OBD=60,BO=BD=,OA=DE=2,BOA=BDE=90,ABD=30+60=90,而BDOC=,BCDE=1,E(,1),(1)=,点E在该反比例函数的图象上考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转18、问题1: 2 8 问题2: 3 8 问题3:设学校学生人数为x人,生均投入为y元,依
20、题意得: ,因为x0,所以,当即x=800时,y取最小值2答:当学校学生人数为800人时,该校每天生均投入最低,最低费用是2元. 【解析】试题分析:问题1:当 时,周长有最小值,求x的值和周长最小值;问题2:变形,由当x+1= 时, 的最小值,求出x值和的最小值;问题3:设学校学生人数为x人,生均投入为y元,根据生均投入=支出总费用学生人数,列出关系式,根据前两题解法,从而求解试题解析:问题1:当 ( x0)时,周长有最小值,x=2,当x=2时,有最小值为=3即当x=2时,周长的最小值为23=8;问题2:y1x1(x1)与函数y2x22x17(x1),当x+1= (x1)时, 的最小值,x=3
21、,x=3时, 有最小值为3+38,即当x=3时, 的最小值为8;问题3:设学校学生人数为x人,则生均投入y元,依题意得,因为x0,所以,当即x=800时,y取最小值2.答:当学校学生人数为800时,该校每天生均投入最低,最低费用是2元19、1.【解析】分析:利用新定义得到101011=125+024+123+022+121+120,然后根据乘方的定义进行计算详解:101011=125+024+123+022+121+120=1,所以二进制中的数101011等于十进制中的1点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方20、(1);(2)或;【解析】(1)利用点
22、A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围【详解】(1)过点, ,反比例函数的解析式为;点在上,一次函数过点,解得:一次函数解析式为;(2)由图可知,当或时,一次函数值大于反比例函数值【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式21、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解析】(1)根据“第一天收到捐款钱数(1+每次降价的百分率)2=第三天收到捐款钱
23、数”,设出未知数,列方程解答即可.(2)第三天收到捐款钱数(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【详解】(1)设捐款增长率为x,根据题意列方程得:,解得x1=0.1,x2=1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100(1+10%)=13310元.答:第四天该单位能收到13310元捐款.22、(1)45(2),理由见解析【解析】(1)由线段的垂直平分线的性质可得PMPN,POMN,由等腰三角形的性质可得PMNPNM,由正方形的性质可得APPN,APN90,可得APO,由三角形内角和定理可求AMN的度数;(2)由等腰直角三角形的性质和正方形的性质可
24、得,MNCANB45,可证CBNMAN,可得【详解】解:(1)如图,连接MP,直线l是线段MN的垂直平分线,PMPN,POMNPMNPNMMPONPO90,四边形ABNP是正方形APPN,APN90APMP,APO90(90)APMMPOAPO(90)902,APPM,AMNAMPPMN4545(2)理由如下:如图,连接AN,CN,直线l是线段MN的垂直平分线,CMCN,CMNCNM45,MCN90,四边形APNB是正方形ANBBAN45,MNCANB45ANMBNC又CBNMAN【点睛】本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的
25、关键23、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CHAB于点H,如图所示,BC=12km,B=30,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km,DMA=90,B=45,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来少走的
26、路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.24、(1);(2);(3)或【解析】(1)如图2,连接OP,则DF与半圆相切,利用OPDFCD(AAS),可得:OD=DF=30;(2)利用,求出,则;DF与半圆相切,由(1)知:PD=CD=18,即可求解;(3)设PG=GH=m,则:,求出,利用,即可求解.【详解】(1)如图,连接与半圆相切,在矩形中,根据勾股定理,得在和中,(2)如图,当点与点重合时,过点作与点,则且,由(1)知:,当与半圆相切时,由(1)知:,(3)设半圆与矩形对角线交于点P、H,过点O作OGDF,则PG=GH,则,设:PG=GH=m,则:,整理得:25m2-640m+1216=0,解得:,.【点睛】本题考查的是圆的基本知识综合运用,涉及到直线与圆的位置关系、解直角三角形等知识,其中(3),正确画图,作等腰三角形OPH的高OG,是本题的关键