《2023届广西桂林市临桂县重点名校中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届广西桂林市临桂县重点名校中考数学仿真试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABC中,AB=AC=3,BC=4,AE平分BAC交BC于点E,点D为AB的中点,连接DE,则BDE的周长是()A3B4C5D62已知二次函数yax2+bx+c的图象如图所示,有以下结论:a+b+c0;ab+c1;abc0;4a2b+c0;ca1,其中所有正确结论的序号是()ABCD3在平面直角坐标系xOy中,将点N(1,2)绕点O旋转180,得到的对应点的坐标是( )A(1,2)B(1,2)C(1,2)D(1,2)4已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、
3、C除外),作PEAB于点E,作PFBC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()ABCD5甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大A3B4C5D66提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A13.75106 B13.75105 C1.375108 D1.3751097两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的
4、容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()ABCD8如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是ABCD39据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A9.29109B9.291010C92.91010D9.29101110如图,从正方形纸片的顶点沿虚线剪开,则1的度数可能是( )A44B45C46D4711如图,ABC中,若DEBC,EFAB,则下列比例式正确的是( )ABCD12估算的值在()A3和4之间B4和5之间C5和6之间D6和7之间二
5、、填空题:(本大题共6个小题,每小题4分,共24分)13如图,直线yx2与反比例函数y的图象在第一象限交于点P.若OP,则k的值为_ 14如图,在RtABC中,C=90,AB=5,BC=3,点P、Q分别在边BC、AC上,PQAB,把PCQ绕点P旋转得到PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分BAC,则CP的长为_15等腰梯形是_对称图形.16将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为_17已知,(),请用计算器计算当时,、的若干个值,并由此归纳出当时,、间的大小关系为_.182的平方根是_.三、解答题:(本大题共9个小题,共78
6、分,解答应写出文字说明、证明过程或演算步骤19(6分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。(2)若要使租车总费用不超过19720元,一共有几种租车方案?那种租车方案最省钱?20(6分)如图,平面直角坐标系xOy中,已知点A
7、(0,3),点B(,0),连接AB,若对于平面内一点C,当ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”(1)在点C1(2,3+2),点C2(0,2),点C3(3+,)中,线段AB的“等长点”是点_;(2)若点D(m,n)是线段AB的“等长点”,且DAB=60,求点D的坐标;(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围21(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;(2)小明先转动转盘一次,当转盘停止转动时,记
8、录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)22(8分)已知P是O外一点,PO交O于点C,OC=CP=2,弦ABOC,AOC的度数为60,连接PB求BC的长;求证:PB是O的切线23(8分)已知:如图,在半径是4的O中,AB、CD是两条直径,M是OB的中点,CM的延长线交O于点E,且EMMC,连接DE,DE=(1)求证:AMCEMB;(2)求EM的长;(3)求sinEOB的值24(10分)某景区商店销售一种纪念品,每件的进货价为40元经市场调研,当该纪念品每件的销售价为50元时,每
9、天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件当每件的销售价为52元时,该纪念品每天的销售数量为 件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润25(10分)如图,已知抛物线yx24与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线yx+m经过点A,与y轴交于点D求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC平行于直线AD,求新抛物线对应的函数表达式26(12分)(1)计算:()3()34cos30+;(2)解方程:x(x4)=2x827(12分)A
10、粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公
11、式即可求得答案【详解】解:在ABC中,AB=AC=3,AE平分BAC,BE=CE=BC=2,又D是AB中点,BD=AB=,DE是ABC的中位线,DE=AC=,BDE的周长为BD+DE+BE=+2=5,故选C【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键2、C【解析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a0,b0,c0,则当x=1时,y=a+b+c0,正确;当x=-1时,y=a-b+c1,正确;abc0,正确;对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=10,错误;对称轴x=-=-1,b=2a,
12、又x=-1时,y=a-b+c1,代入b=2a,则c-a1,正确故所有正确结论的序号是故选C3、A【解析】根据点N(1,2)绕点O旋转180,所得到的对应点与点N关于原点中心对称求解即可.【详解】将点N(1,2)绕点O旋转180,得到的对应点与点N关于原点中心对称,点N(1,2),得到的对应点的坐标是(1,2).故选A.【点睛】本题考查了旋转的性质,由旋转的性质得到的对应点与点N关于原点中心对称是解答本题的关键.4、A【解析】由题意可得:APE和PCF都是等腰直角三角形AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长则y=2x,为正比例函数故选A5、C【解析】解:甲和乙盒中1个
13、小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为2,3,1,5,6,7,8和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1故p(5)最大,故选C6、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】13.75亿=1.375109.故答案选D.【点睛】本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.7、C【解析】混合液中的酒精与水的容积之比为两瓶中的纯酒精
14、与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1+1+, 水之和为:+,混合液中的酒精与水的容积之比为:(+)(+),故选C【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键8、B【解析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点【详解】解:如图,AB的中点即数轴的原点O根据数轴可以得到点A表示的数是故选:B【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键9、B【解析】科学记数法的表示形式为a1n的形式,其中1|a|1,n为整
15、数确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1【详解】解:929亿=92900000000=9.2911故选B【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键10、A【解析】连接正方形的对角线,然后依据正方形的性质进行判断即可【详解】解:如图所示:四边形为正方形,14511145故选:A【点睛】本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键11、C【解析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解【详解】解:DEBC,BDBC,选项A不正确;DEBC,EFAB,EF=BD,选项B不正确;EFAB,
16、选项C正确;DEBC,EFAB,=,CEAE,选项D不正确;故选C【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健12、C【解析】由可知56,即可解出.【详解】56,故选C.【点睛】此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】设点P(m,m+2),OP=, =,解得m1=1,m2=1(不合题意舍去),点P(1,1),1=,解得k=1点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键14、1【解析】连接AD,根据PQAB可知
17、ADQ=DAB,再由点D在BAC的平分线上,得出DAQ=DAB,故ADQ=DAQ,AQ=DQ在RtCPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,PQAB,ADQ=DAB,点D在BAC的平分线上,DAQ=DAB,ADQ=DAQ,AQ=DQ,在RtABC中,AB=5,BC=3,AC=4,PQAB,CPQCBA,CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在RtCPQ中,PQ=5x,PD=PC=3x,DQ=1x,AQ=4-4x,4-4x=1x,解得x=,CP=3x=1;故答案为:1【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾
18、股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型15、轴【解析】根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线【详解】画图如下:结合图形,根据轴对称的定义及等腰梯形的特征可知,等腰梯形是轴对称图形.故答案为:轴【点睛】本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形16、【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长则所得到的侧面展开图形面积.考点:勾股定理,圆锥的侧面积公式点评:解题的关键是熟记圆锥的侧面积公式:圆锥的侧面积底面半径母线.17、
19、【解析】试题分析:当n=3时,A=0.3178,B=1,AB;当n=4时,A=0.2679,B=0.4142,AB;当n=5时,A=0.2631,B=0.3178,AB;当n=6时,A=0.2134,B=0.2679,AB;以此类推,随着n的增大,a在不断变小,而b的变化比a慢两个数,所以可知当n3时,A、B的关系始终是AB.18、【解析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根)【详解】解:2的平方根是故答案为【点睛】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明
20、过程或演算步骤19、(1)y=100x+17360;(2)3种方案:A型车21辆,B型车41辆最省钱.【解析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题【详解】(1)由题意:y=380x+280(62-x)=100x+17360,30x+20(62-x)1441,x20.1,又x为整数,x的取值范围为21x62的整数;(2)由题意100x+1736019720,x23.6,21x23,共有3种租车方案,x=21时,y有最小值=1即租租A型车21辆,B型车41辆最省钱【点睛】本题考查一次函数的应用、一元一
21、次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题20、(1)C1,C3;(2)D(,0)或D(,3);(3)k 【解析】(1)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论【详解】(1)A(0,3),B(,0),AB=2,点C1(2,3+2),AC1=2,AC1=AB,C1是线段AB的“等长点”,点C2(0,2),AC2=5,BC2=,AC2AB,BC2AB,C2不是线段AB的“等长点”,点C3(3+,),BC3=2,BC3
22、=AB,C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在RtAOB中,OA=3,OB=,AB=2,tanOAB=,OAB=30,当点D在y轴左侧时,DAB=60,DAO=DABBAO=30,点D(m,n)是线段AB的“等长点”,AD=AB,D(,0),m=,n=0,当点D在y轴右侧时,DAB=60,DAO=BAO+DAB=90,n=3,点D(m,n)是线段AB的“等长点”,AD=AB=2,m=2;D(,3)(3)如图2,直线y=kx+3k=k(x+3),直线y=kx+3k恒过一点P(3,0),在RtAOP中,OA=3,OP=3,APO=30,PAO=60,BAP=90,当PF与
23、B相切时交y轴于F,PA切B于A,点F就是直线y=kx+3k与B的切点,F(0,3),3k=3,k=,当直线y=kx+3k与A相切时交y轴于G切点为E,AEG=OPG=90,AEGPOG,=,解得:k=或k=(舍去)直线y=kx+3k上至少存在一个线段AB的“等长点”,k,【点睛】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点21、(1);(2)这两个数字之和是3的倍数的概率为【解析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这
24、2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.【详解】解:(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,指针所指扇形中的数字是奇数的概率为,故答案为;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=【点睛】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.22、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定OBC的等边三角形,则BC=
25、OC=2;(2)欲证明PB是O的切线,只需证得OBPB即可(1)解:如图,连接OBABOC,AOC=60,OAB=30,OB=OA,OBA=OAB=30,BOC=60,OB=OC,OBC的等边三角形,BC=OC又OC=2,BC=2;(2)证明:由(1)知,OBC的等边三角形,则COB=60,BC=OCOC=CP,BC=PC,P=CBP又OCB=60,OCB=2P,P=30,OBP=90,即OBPB又OB是半径,PB是O的切线考点:切线的判定23、(1)证明见解析;(2)EM=4;(3)sinEOB=【解析】(1)连接A、C,E、B点,那么只需要求出AMC和EMB相似,即可求出结论,根据圆周角定
26、理可推出它们的对应角相等,即可得AMCEMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EFAB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出RtEOF各边的长度,根据锐角三角函数的定义,便可求得sinEOB的值【详解】(1)证明:连接AC、EB,如图1,A=BEC,B=ACM,AMCEMB;(2)解:DC是O的直径,DEC=90,DE2+EC2=DC2,DE=,CD=8,且EC为正数,EC=7,M为OB的中点,BM=2,AM=6,AMBM=EMC
27、M=EM(ECEM)=EM(7EM)=12,且EMMC,EM=4;(3)解:过点E作EFAB,垂足为点F,如图2,OE=4,EM=4,OE=EM,OF=FM=1,EF=,sinEOB=【点睛】本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.24、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元【解析】分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价进价)销量”列出函数关系式,根据二次函数的性质,即可解答详解:
28、(1)由题意得:20010(5250)=20020=180(件),故答案为180;(2)由题意得:y=(x40)20010(x50)=10x2+1100x28000=10(x55)2+2250每件销售价为55元时,获得最大利润;最大利润为2250元点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握25、(1)1 ;(1) yx14x+1或yx1+6x+1【解析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:yx1+bx+1,根据二次函数的性质求出点C的坐标,根据题意求出直线CC的解析式,代入计算即可【详解】解
29、:(1)由x140得,x11,x11,点A位于点B的左侧,A(1,0),直线yx+m经过点A,1+m0,解得,m1,点D的坐标为(0,1),AD1;(1)设新抛物线对应的函数表达式为:yx1+bx+1,yx1+bx+1(x+)1+1,则点C的坐标为(,1),CC平行于直线AD,且经过C(0,4),直线CC的解析式为:yx4,14,解得,b14,b16,新抛物线对应的函数表达式为:yx14x+1或yx1+6x+1【点睛】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键26、(1)3;(1)x1=4,x1=1【解析】(1)根据有理数的
30、混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8()4+1=81+1=3;(1)移项得:x(x4)1(x4)=0,(x4)(x1)=0,x4=0,x1=0,x1=4,x1=1【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.27、(1)w200x+8600(0x6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到
31、C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元【解析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6x吨,A粮仓运往C市粮食10x吨,A粮仓运往D市粮食12(10x)x+2吨,总运费w300x
32、+500(6x)+400(10x)+800(x+2)200x+8600(0x6)(2)200x+86009000解得x2共有3种调运方案方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)w200x+8600k0,所以当x0时,总运费最低也就是从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;最低运费是8600元【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义