《专题四稳定性PPT讲稿.ppt》由会员分享,可在线阅读,更多相关《专题四稳定性PPT讲稿.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品课程精品课程数学建模数学建模专题四稳定性第1页,共20页,编辑于2022年,星期三稳定性模型稳定性模型 对象仍是动态过程,而建模目的是研究时间充分对象仍是动态过程,而建模目的是研究时间充分长以后过程的变化趋势长以后过程的变化趋势 平衡状态是否稳定。平衡状态是否稳定。不求解微分方程,而是用微分方程稳定性理不求解微分方程,而是用微分方程稳定性理论研究平衡状态的稳定性。论研究平衡状态的稳定性。第2页,共20页,编辑于2022年,星期三一阶微分方程的平衡点及其稳定性一阶微分方程的平衡点及其稳定性一阶非线性(自治)方程一阶非线性(自治)方程F(x)=0的根的根x0 微分方程的微分方程的平衡点平衡点设
2、设x(t)是方程的解,若从是方程的解,若从x0 某邻域的任一初值出发,某邻域的任一初值出发,都有都有称称x0是方程是方程(1)的的稳定平衡点稳定平衡点不求不求x(t),判断判断x0稳定性的方法稳定性的方法直接法直接法(1)的近似线性方程的近似线性方程第3页,共20页,编辑于2022年,星期三6.1 捕鱼业的持续收获捕鱼业的持续收获 再生资源(渔业、林业等)与非再生资源(渔业、林业等)与非再生资源(矿业等)再生资源(矿业等)再生资源应适度开发再生资源应适度开发在持续稳产在持续稳产前提下实现最大产量或最佳效益。前提下实现最大产量或最佳效益。问题及问题及 分析分析 在在捕捞量稳定捕捞量稳定的条件下,
3、如何控制的条件下,如何控制捕捞使产量最大或效益最佳。捕捞使产量最大或效益最佳。如果使捕捞量等于自然增长量,如果使捕捞量等于自然增长量,渔场鱼渔场鱼量将保持不变量将保持不变,则捕捞量稳定。,则捕捞量稳定。背景背景第4页,共20页,编辑于2022年,星期三产量模型产量模型假设假设 无捕捞时鱼的自然增长服从无捕捞时鱼的自然增长服从 Logistic规律规律 单位时间捕捞量与渔场鱼量成正比单位时间捕捞量与渔场鱼量成正比建模建模 捕捞情况下渔捕捞情况下渔场鱼量满足场鱼量满足 不需要求解不需要求解x(t),只需知道只需知道x(t)稳定的条件稳定的条件r固有增长率固有增长率,N最大鱼量最大鱼量h(x)=Ex
4、,E捕捞强度捕捞强度x(t)渔场鱼量渔场鱼量第5页,共20页,编辑于2022年,星期三产量模型产量模型平衡点平衡点稳定性判断稳定性判断x0 稳定稳定,可得到稳定产量可得到稳定产量x1 稳定稳定,渔场干枯渔场干枯E捕捞强度捕捞强度r固有增长率固有增长率第6页,共20页,编辑于2022年,星期三产量模型产量模型在捕捞量稳定的条件下,在捕捞量稳定的条件下,控制捕捞强度使产量最大控制捕捞强度使产量最大图解法图解法P的横坐标的横坐标 x0平衡点平衡点y=rxhPx0y0y=h(x)=ExxNy=f(x)P的纵坐标的纵坐标 h产量产量产量最大产量最大f 与与h交点交点Phmx0*=N/2P*y=E*x控制
5、渔场鱼量为最大鱼量的一半控制渔场鱼量为最大鱼量的一半第7页,共20页,编辑于2022年,星期三效益模型效益模型假设假设 鱼销售价格鱼销售价格p 单位捕捞强度费用单位捕捞强度费用c 单位时间利润单位时间利润在捕捞量稳定的条件下,控制捕捞强在捕捞量稳定的条件下,控制捕捞强度使效益最大度使效益最大.稳定平衡点稳定平衡点求求E使使R(E)最大最大渔场渔场鱼量鱼量收入收入 T=ph(x)=pEx支出支出 S=cE第8页,共20页,编辑于2022年,星期三EsS(E)T(E)0rE捕捞捕捞过度过度 封闭式捕捞封闭式捕捞追求利润追求利润R(E)最大最大 开放式捕捞开放式捕捞只求利润只求利润R(E)0R(E)
6、=0时的捕捞强度时的捕捞强度(临界强度临界强度)Es=2ER临界强度下的渔场鱼量临界强度下的渔场鱼量捕捞过度捕捞过度ERE*令令=0第9页,共20页,编辑于2022年,星期三6.2 种群的相互竞争种群的相互竞争 一个自然环境中有两个种群生存,它们之间的关系:一个自然环境中有两个种群生存,它们之间的关系:相互竞争;相互依存;弱肉强食。相互竞争;相互依存;弱肉强食。当两个种群为争夺同一食物来源和生存空间相互竞争当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。环境容许的最大容量。建立数学
7、模型描述两个种群相互竞争的过程,分析建立数学模型描述两个种群相互竞争的过程,分析产生这种结局的条件。产生这种结局的条件。第10页,共20页,编辑于2022年,星期三模型假设模型假设 有甲乙两个种群,它们独自生存时数量有甲乙两个种群,它们独自生存时数量变化均服从变化均服从Logistic规律规律;两种群在一起生存时,乙对甲增长的阻滞作用与两种群在一起生存时,乙对甲增长的阻滞作用与乙的数量成正比乙的数量成正比;甲对乙有同样的作用。甲对乙有同样的作用。对于消耗甲的资源而言,对于消耗甲的资源而言,乙乙(相对于相对于N2)是甲是甲(相对于相对于N1)的的 1 倍。倍。对甲增长的阻滞对甲增长的阻滞作用,乙
8、大于甲作用,乙大于甲乙的竞争力强乙的竞争力强模型模型第11页,共20页,编辑于2022年,星期三模型模型分析分析(平衡点及其稳定性平衡点及其稳定性)(二阶二阶)非线性非线性(自治自治)方程方程的平衡点及其稳定性的平衡点及其稳定性平衡点平衡点P0(x10,x20)代数方程代数方程的根的根若从若从P0某邻域的任一初值出发,都有某邻域的任一初值出发,都有称称P0是微分方程的是微分方程的稳定平衡点稳定平衡点模型模型第12页,共20页,编辑于2022年,星期三判断判断P0(x10,x20)稳定性稳定性的方法的方法直接法直接法(1)的近似线性方程的近似线性方程平衡点平衡点 P0稳定稳定(对对2,1)p 0
9、 且且 q 0平衡点平衡点 P0不稳定不稳定(对对2,1)p 0 或或 q 0第13页,共20页,编辑于2022年,星期三仅当仅当 1,2 1时,时,P3才有意义才有意义模型模型第14页,共20页,编辑于2022年,星期三平衡点稳平衡点稳定性分析定性分析平衡点平衡点 Pi 稳定条件:稳定条件:p 0 且且 q 0第15页,共20页,编辑于2022年,星期三种群竞争模型的平衡点及稳定性种群竞争模型的平衡点及稳定性不稳定不稳定平平 衡点衡点 21,11,P1,P2 是一个种群存活而另一灭绝的平衡点是一个种群存活而另一灭绝的平衡点P3 是两种群共存的平衡点是两种群共存的平衡点 11,21P1稳定的条
10、件稳定的条件 11?11 21,11P1,P2都不都不(局部局部)稳定稳定0(3)11,21,21,21加上与加上与(4)相区别的相区别的 11 P2 稳定稳定 P3 稳定稳定P1全局稳定全局稳定第18页,共20页,编辑于2022年,星期三结果解释结果解释对于消耗甲的资源而言,对于消耗甲的资源而言,乙乙(相对于相对于N2)是甲是甲(相对于相对于N1)的的 1 倍。倍。对甲增长的阻滞对甲增长的阻滞作用,乙小于甲作用,乙小于甲乙的竞争力弱乙的竞争力弱 P1稳定的条件:稳定的条件:11 21 甲的竞争力强甲的竞争力强甲达到最大容量,乙灭绝甲达到最大容量,乙灭绝 P2稳定的条件:稳定的条件:11,21 P3稳定的条件:稳定的条件:11,21通常通常 1 1/2,P3稳定条件不满足稳定条件不满足第19页,共20页,编辑于2022年,星期三第6章作业:教材P201 ex3 思考:教材P202 ex14第20页,共20页,编辑于2022年,星期三