《数学建模计算机仿真分析.pptx》由会员分享,可在线阅读,更多相关《数学建模计算机仿真分析.pptx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一个问题我们做一个实验:把一个硬币掷一万次,统计两个面出现的次数。这样做很简单但却需要大量时间,有没有一种较快的办法把这个实验完成呢?第1页/共29页利用计算机可以实现这一想法 生成一个在 0,1 中的随机数a,如果a0为常数,则称X服从参数为 的指数分布指数分布的期望值为 排队服务系统中顾客到达率为常数时的到达间隔、故障率为常数时零件的寿命都服从指数分布指数分布在排队论、可靠性分析中有广泛应用注意:MATLAB中,产生参数为 的指数分布的命令为exprnd()例 顾客到达某商店的间隔时间服从参数为0.1的指数分布 指数分布的均值为1/0.1=10 指两个顾客到达商店的平均间隔时间是10个单位
2、时间.即平均10个单位时间到达1个顾客.顾客到达的间隔时间可用exprnd(10)模拟第11页/共29页设离散型随机变量X的所有可能取值为0,1,2,且取各个值的概率为其中 0为常数,则称X服从参数为 的泊松分布泊松分布在排队系统、产品检验、天文、物理等领域有广泛应用泊松分布的期望值为第12页/共29页如相继两个事件出现的间隔时间服从参数为 的指数分布,则在单位时间间隔内事件出现的次数服从参数为 的泊松分布即单位时间内该事件出现k次的概率为:反之亦然指数分布与泊松分布的关系:(1)指两个顾客到达商店的平均间隔时间是10个单位时间.即平均10个单位时间到达1个顾客.(2)指一个单位时间内平均到达
3、0.1个顾客例(1)顾客到达某商店的间隔时间服从参数为0.1的指数分布 (2)该商店在单位时间内到达的顾客数服从参数为0.1的泊松分布 第13页/共29页计算机仿真案例1模型建立:由于本题要求使从搅拌中心到各个工地运输混凝土的总的吨公里数最少,所以,该问题的目标函数是 第14页/共29页求解方法:1、高数中的方法2、数值计算方法3、计算机仿真:离散化,遍历!第15页/共29页计算机仿真案例2例2(赶火车过程仿真)一列火车从A站经过B站开往C站,某人每天赶往B站乘这趟火车。已知火车从A站到B站的运行时间是均值为30min、标准差为2min的正态随机变量。火车大约在下午1点离开站。火车离开时刻的频
4、率分布和这个人到达站时刻的频率分布如下表所示。问他能赶上火车的概率有多大?出发时刻出发时刻1:001:051:10到达时刻到达时刻1:281:301:321:34频率频率0.70.20.1频率频率0.30.40.20.1第16页/共29页u仿真过程:u1、生成火车的发车时间、运行时间,从而达得到其到达B站的时间。u2、生成此人达到B站的时间。u3、如果此人到达站的时间早于火车到达时间,则算赶上火车一次。u4、将上述过程重复一万次,统计赶上火车的频率作为所求概率。分析:这个问题用概率论的方法求解十分困难,它涉及此人到达时刻、火车离开A站的时刻、火车运行时间几个随机变量。我们可以用计算机仿真的方法
5、来解决。第17页/共29页第18页/共29页计算机仿真案例3 追击问题 我缉私雷达发现前方(南)c km处有一艘走私船正以速度a沿直线向东匀速行驶,缉私艇立即以最大速度b追赶,若用雷达进行跟踪,缉私艇的瞬时速度方向始终指向走私船,是求缉私艇追逐路线和追赶上的时间。分析 此问题可以建立微分方程模型,这里我们建立差分方程模型,用仿真的方法求解。取时间步长为h,在第i 步时的时间即t=hi,走私船的位置坐标为(hia,0),设缉私艇的位置坐标为P(xi,yi)。从第i步到第i+1步的计算公式为第19页/共29页计算机仿真案例4某自行车商店的仓库管理人员采取一种简单的订货策略,当库存量降低到P辆自行车
6、时就向厂家订货,每次订货Q辆,如果某一天的需求量越过了库存量,商店就有销售损失和信誉损失,但如果库存量过多,会导致资金积压和保管费增加。该问题的已知条件是:(1)从发出订货到收到货物需隔三天;(2)每辆自行车保管费为0.75元/天,每辆自行车的缺货损失为1.8元/天,每次的订货费为75元;(3)每天自行车的需求量服从0到99之间的均匀分布;(4)原始库存为115辆,并假设第一天没有发出订货。若现在已有如下表所示的五种库存策略,请选择一种总费用最少的策略。第20页/共29页方案编号方案编号订货起点:订货起点:P辆辆订货量:订货量:Q方案方案1125150方案方案2125250方案方案315025
7、0方案方案4175250方案方案5175300我们以150天为例,依次对这五种方案进行仿真,最后比较个方案的总费用,从而得出决策。第21页/共29页 计算机仿真时的工作流程是早上到货、全天销售、晚上订货。输入一下常数和初始数据后,以一天为时间步长进行仿真。首先检查这一天是否为预订到货日期,如果是,则原有库存量加Q,并把到货量清为零;如果不是,则库存量不变。接着仿真随机需求量,这可用计算机语言这的随机函数得到。如果库存量大于需求量,则新的库存量减去需求量;反之,则新的库存量变为零,并且要在总费用上加上缺货损失。然后检查实际库存量加上预订到货量是否小于重新订货点P,如果是,则需要重新订货,这是就加
8、一次订货费。如此重复运行150天,即可得到所需费用总值。第22页/共29页评价函数的设置方法 第i天销售量为 辆 缺货量为 辆销售完后的库存量为 辆0-1变量 表示第i天销售完后是否有库存,若库存量大于等于0,则 1,否则为0;用0-1变量 表示第i天销售是否会缺货,如果缺货量大于0,则 1;用0-1变量 表示第i天是否要订货。则第i天的总费用(元)为 第23页/共29页150天的总费用(元)为然而以此总费用最小为目标函数是不妥的,应当将总费用分摊到每辆销售的自行车上,即单位销量的费用更加合适,所以评价函数为第24页/共29页图3 计算机订货决策仿真流程图第25页/共29页实验作业1编一个福利
9、彩票电脑选号的程序第26页/共29页3.某设备上安装有4只型号规格完全相同的电子管,已知电子管寿命服从10002000h之间的均匀分布电子管损坏时有两种维修方案,一是每次更换损坏的那只;二是当其中1只损坏时4只同时更换已知更换时间为换1只时需1h,4只同时换为2h更换时机器因停止运转每小时的损失为20元,又每只电子管价格10元,试用模拟方法确定哪一个方案经济合理?第27页/共29页4、一个边长为10米的正方体空间内有一个发声物体。在这个正方体的A(x1,x2),B(y1,y2),C(z1,z2)三处安装了三个时间完全同步声音接受转置。三个装置分别在t1,t2,t3时刻接受到了同一声音信号。请建立模型求出发声物体的位置。第28页/共29页感谢您的观看。第29页/共29页