(5.1.1)--5.1.1Eigenvaluesandeigenvectorso.ppt

上传人:奉*** 文档编号:87322067 上传时间:2023-04-16 格式:PPT 页数:8 大小:654.60KB
返回 下载 相关 举报
(5.1.1)--5.1.1Eigenvaluesandeigenvectorso.ppt_第1页
第1页 / 共8页
(5.1.1)--5.1.1Eigenvaluesandeigenvectorso.ppt_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《(5.1.1)--5.1.1Eigenvaluesandeigenvectorso.ppt》由会员分享,可在线阅读,更多相关《(5.1.1)--5.1.1Eigenvaluesandeigenvectorso.ppt(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Linear AlgebraEigenvalues and Eigenvectors of a MatrixDefinition.Let A be an n-order square matrix.If the number 0 and n-dimensional non-zero column vector satisfy:A=0,then 0 is the eigenvalue of matrix A and is a eigenvector of A belonging to 0.1.Eigenvalue and Eigenvector1.Eigenvalue and Eigenvect

2、orNote:If A is a singular matrix(|A|=0),then the homogeneous linear system Ax=0 has non-zero solutions.If is the non-zero solution of Ax=0,then A=0=0.Therefore,it can be seen that 0=0 is the eigenvalue of the singular matrix A,and the non-zero solutions of the linear system Ax=0 are all the eigenvec

3、tors of A belonging to the eigenvalue 0=0.Generally,it follows from A=0 that(0E A)=0.It can be seen that is a non-zero solution to the homogeneous linear system(0 E A)x=0.So we have|0 E A|=0.Definition.Let A be an n-order square matrix and be a parameter,then we call the determinantas the characteri

4、stic polynomial of square matrix A.And det(E A)=0 is called the characteristic equation of A.2 2.Characteristic Polynomial.Characteristic PolynomialSteps for computing the eigenvalues and eigenvectors of matrix A:(1)The eigenvalues of A are the solutions of the characteristic equation,and the nth-or

5、der square matrix A has n eigenvalues.(2)The eigenvectors of A belonging to the eigenvalues i are all non-zero solutions of homogeneous linear system(iE E A A)x x=0 0.Example.Find the eigenvalues and eigenvectors of the matrix Solution.The characteristic polynomial of A is =(=(-1-1)()(-2)-2)2 2-1=-1

6、=(-1-1)2 2(-3)-3)So the eigenvalues are 1=2=1,3=3.For 1=2=1,we need to solve(EA)x=0.then we get the same solution equation:and a fundamental solution 1=(0,0,1)T.So k 1(k0)is all the eigenvectors belonging to 1=2=1.SinceFor 3=3,we need to solve(3EA)x=0.then we get the same solution equation:and its fundamental solution 2=(1,1,1)T.Since So k2(k0)is all the eigenvectors belonging to 3=3.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁