(6.1.3)--6.3CriterionofCongruentMatrices.ppt

上传人:奉*** 文档编号:87314673 上传时间:2023-04-16 格式:PPT 页数:11 大小:512.80KB
返回 下载 相关 举报
(6.1.3)--6.3CriterionofCongruentMatrices.ppt_第1页
第1页 / 共11页
(6.1.3)--6.3CriterionofCongruentMatrices.ppt_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《(6.1.3)--6.3CriterionofCongruentMatrices.ppt》由会员分享,可在线阅读,更多相关《(6.1.3)--6.3CriterionofCongruentMatrices.ppt(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Linear AlgebraCriterion of Congruent MatricesSince replacing X in f(X)X TAX by XPY,we get Hence the formula(3)described in the preceding section can be obtained if there exists the invertible matrix P such thatHere D is a diagonal matrix.In other words,reducing a quadratic form to its standard form

2、is equivalent to obtain the matrix representation(4)for the real symmetric matrix A,or by the terminology in the following definition,finding a diagonal matrix D which is congruent to A.Congruent MatricesCongruent MatricesDefinition.Let A and B be two square matrices of order n.If there exists an in

3、vertible matrix P such that BPTAP,then the two matrices A and B are called congruent,and it is denoted by AB.where“T”denotes the transpose of matrix.For example,if A and B are orthogonal similar,then there exists orthogonal matrix P such thatClearly,A and B are orthogonally congruent.If A is real sy

4、mmetric matrix,there exists orthogonal matrix Q,such that where is a diagonal matrix.Therefore the real symmetric matrix and a diagonal matrix are congruent.Proposition.Matrix congruence is an equivalent relation.We often use the following methods to determine whether or not two matrices A and B are

5、 congruent.Theorem.The quadratic form f X TAX can be reduced to the quadratic form f Y TAY by means of a nonsingular linear transformation XPY,then BPTAP is congruent to A.Theorem.A real symmetric matrix is congruent to a diagonal matrix,i.e.,if a matrix A is a real symmetric matrix of rank r,then t

6、here is a nonsingular matrix P such that where ai0,i1,2,r.It should be noted that if A is not a symmetric matrix,then PTAP may not be a diagonal matrix.Theorem.Two real symmetric matrices of order n are congruent if and only if they have the same rank and positive(or negative)inertia index.Theorem.I

7、f two real symmetric matrices are similar,then they must be congruent,but their inverses dont hold.Theorem.Two positive definite matrices of the same order must be congruent.Example.Suppose that A and B are real symmetric matrices of order n,prove that if A and B are congruent,then r(A)r(B).Converse

8、ly,if r(A)r(B),determine whether or not A and B are congruent?Solution.Because A and B are congruent,there exists invertible matrix P such that BPTAP.Hence r(B)r(PTAP)r(A).Conversely,if only r(A)r(B),then A and B may not be congruent.This is because they may be not symmetric matrices.For example,but B is not a symmetric matrix,it can not be congruent to A.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁