特殊的平行四边形1821矩形.pptx

上传人:莉*** 文档编号:87305316 上传时间:2023-04-16 格式:PPTX 页数:23 大小:360.50KB
返回 下载 相关 举报
特殊的平行四边形1821矩形.pptx_第1页
第1页 / 共23页
特殊的平行四边形1821矩形.pptx_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《特殊的平行四边形1821矩形.pptx》由会员分享,可在线阅读,更多相关《特殊的平行四边形1821矩形.pptx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、两组对边分别平行的四边形两组对边分别平行的四边形是平行四边形是平行四边形ABCD四边形四边形ABCD如果如果AB CD AD BCBDABCDAC平行四平行四边形的边形的性质:性质:边边平行四边形的对边平行四边形的对边平行平行;平行四边形的对边平行四边形的对边相等相等;角角平行四边形的对角平行四边形的对角相等相等;平行四边形的邻角平行四边形的邻角互补互补;对角线对角线平行四边形的对角线平行四边形的对角线互相平分互相平分;第1页/共23页平行四平行四边形的边形的判定:判定:边边两组对边分别两组对边分别平行平行的四边形;的四边形;两组对边分别两组对边分别相等相等的四边形;的四边形;角角两组对角分别

2、两组对角分别相等相等的四边形;的四边形;对角线对角线对角线对角线互相平分互相平分的四边形;的四边形;一组对边一组对边平行平行且且相等相等的四边形;的四边形;平行四边形的判定定理:平行四边形的判定定理:第2页/共23页一个角是一个角是直角直角两组对边两组对边分别平行分别平行平行平行四边形四边形矩形矩形情情景景创创设设我们已经知道平行四边形是特殊的我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,边形的性质外,还有它的特殊性质,同样对于平行四边形来说有特殊情同样对于平行四边形来说有特殊情况即特殊的平行四边形,也就是这况即特殊的

3、平行四边形,也就是这堂课我们就来研究一种特殊的平行堂课我们就来研究一种特殊的平行四边形四边形 矩形矩形第3页/共23页有一个角是直角的平行四边形是矩形矩形的定义:平行四边形平行四边形矩形矩形有一个角有一个角 是直角是直角矩形是特殊的平行四边形矩形是特殊的平行四边形第4页/共23页具具备备平行四平行四边边形所有的性形所有的性质质ABCDO角角边边对角线对角线对边平行且相等对边平行且相等对角相等对角相等对角线互相平分对角线互相平分矩形的一般性质矩形的一般性质:第5页/共23页探索新知探索新知:矩形是一个特殊的平行四边形,除了具有平行矩形是一个特殊的平行四边形,除了具有平行四边形的所有性质外,还有哪

4、些特殊性质呢?四边形的所有性质外,还有哪些特殊性质呢?猜想1:矩形的四个角都是直角猜想2:矩形的对角线相等ABCD第6页/共23页求证:矩形的四个角都是直角求证:矩形的四个角都是直角已知:如图,四边形已知:如图,四边形ABCD是矩形是矩形求证:求证:A=B=C=D=90ABCD证明:证明:四边形四边形ABCD是矩形是矩形 A=90又又 矩形矩形ABCD是平行四边形是平行四边形 A=C B=D A+B=180 A=B=C=D=90即即矩形的四个角都是直角矩形的四个角都是直角第7页/共23页已知:如图已知:如图,四边形四边形ABCD是矩形是矩形 求证:求证:AC=BDABCD证明:在矩形证明:在矩

5、形ABCD中中ABC=DCB=90又又 AB=DC,BC=CBABCDCBAC=BD 即即矩形的对角线相等矩形的对角线相等求证求证:矩形的对角线相等矩形的对角线相等第8页/共23页矩形特殊的性质矩形特殊的性质矩形的四个角都是直角矩形的四个角都是直角矩形的两条对角线相等矩形的两条对角线相等从角上看:从角上看:从对角线上看:从对角线上看:第9页/共23页矩形的矩形的 两条对角线互相平分两条对角线互相平分矩形的两组对边分别相等矩形的两组对边分别相等矩形的两组对边分别平行矩形的两组对边分别平行矩形的四个角都是直角矩形的四个角都是直角矩形矩形 的的两条对角线相等两条对角线相等边边对角线对角线角角数学语言

6、数学语言四边形四边形ABCD是矩形是矩形AD=BC,CD=ABAD BC,CD ABAC=BD ABCDOAO=CO,OD=OB第10页/共23页观察并思考下面这些物体是什么形状,它们是轴对称图形吗?是中心对称图形吗?有几条对称轴?第11页/共23页边边角角对角线对角线对称性对称性平行四平行四边形边形矩形矩形对边平行对边平行且相等且相等对角相等对角相等邻角互补邻角互补对角线互对角线互相平分相平分中心对中心对称图形称图形对边平行对边平行且相等且相等四个角四个角为直角为直角对角线对角线互相互相平分且平分且相等相等中心对称图形中心对称图形 轴对称图形轴对称图形O这是矩形所这是矩形所特有的性质特有的性

7、质第12页/共23页 四个学生正在做投圈游戏四个学生正在做投圈游戏,他们分别站在一他们分别站在一个矩形的四个顶点处,目标物放在对角线的交点个矩形的四个顶点处,目标物放在对角线的交点处处,这样的队形对每个人公平吗这样的队形对每个人公平吗?为什么?为什么?OABCD公平公平,因为因为OA=OC=OB=OD第13页/共23页练习:教材104页练习1 如图,在矩形ABCD中,找出相等的线段与相等的角。ADCB O小试牛刀小试牛刀第14页/共23页ODCBA相等的线段:相等的线段:AB=CD AD=BC AC=BD OA=OC=OB=OD=AC=BD相等的角:相等的角:DAB=ABC=BCD=CDA=9

8、0 AOB=DOC AOD=BOC OAB=OBA=ODC=OCD OAD=ODA=OBC=OCB等腰三角形有:等腰三角形有:OAB OBC OCD OAD直角三角形有:直角三角形有:Rt ABC Rt BCD Rt CDA Rt DAB全等三角形有:全等三角形有:Rt ABC Rt BCD Rt CDA Rt DAB OABOCD OADOCB已知四边形已知四边形ABCD是矩形是矩形第15页/共23页已知:在已知:在RtABC中,中,ABC=900,BO是是AC上的中线上的中线.求证求证:BO=ACO OC CB BA AD证明证明:延长延长BO至至D,使使OD=BO,连结连结AD、DC.A

9、O=OC,BO=OD四边形四边形ABCD是平行四边形是平行四边形.ABC=900 ABCD是矩形是矩形AC=BD1212BO=BD=AC再探新知再探新知第16页/共23页例例1:1:如图,矩形如图,矩形ABCDABCD的两条对角线相交于点的两条对角线相交于点O O,AOB=60,AB=4AOB=60,AB=4,求矩形对角线的长?求矩形对角线的长?AC与与BD相等且互相平分相等且互相平分 OA=OB AOB=60 AOB是等边三角形是等边三角形 OA=AB=4()矩形的对角线长矩形的对角线长 AC=BD=2OA=8()解:解:四边形四边形ABCD是矩形是矩形DCBAo第17页/共23页P95P9

10、5练习练习3 3:已知:如图,矩形:已知:如图,矩形ABCDABCD的两的两条对角线相交于点条对角线相交于点O O,AOD=120AOD=120,AC=8cmAC=8cm,求矩形对角线的长,求矩形对角线的长.ABOCD解:在矩形ABCD中,AOD=120 AOB=60OA=OB AOB为等边三角形为等边三角形AB=OA=AC=4cm在RtABC中,6.93(cm)BC=方法小结方法小结:如果矩形两对角如果矩形两对角 线的夹角是线的夹角是60 或或120,则其中必有等边三角形则其中必有等边三角形.第18页/共23页矩形具有而一般平行四边形不矩形具有而一般平行四边形不具有的性质是具有的性质是 ()

11、()B.B.对边相等对边相等A.A.对角相等对角相等C.C.对角线相等对角线相等 D.D.对角线互相平分对角线互相平分C C第19页/共23页已知已知:四边形四边形ABCD是矩形是矩形1.若已知若已知AB=8,AD=6,则则AC_ OB=_ 2.若已知若已知 DOC=120,AC8,则,则AD=_cm AB=_cmODCBA5104第20页/共23页DCBA4.已知已知ABC是是Rt,ABC=900,BD是斜边是斜边AC上的中线上的中线(1)若若BD=3 则则AC (2)若若C=30,AB5,则,则AC ,BD .6510第21页/共23页矩形的四个角都是直角矩形的四个角都是直角.矩形的性质定理矩形的性质定理1矩形的对角线相等矩形的对角线相等.矩形的性质定理矩形的性质定理2 推推 论论 直角三角形斜边上的直角三角形斜边上的中线等于斜边的一半中线等于斜边的一半.矩形矩形定义:定义:有一个有一个角是直角是直角的平角的平行四边行四边形叫做形叫做矩形矩形.第22页/共23页感谢观看!感谢观看!第23页/共23页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁