高中数学合情推理与演绎推理课件.ppt

上传人:石*** 文档编号:87251079 上传时间:2023-04-16 格式:PPT 页数:32 大小:2.47MB
返回 下载 相关 举报
高中数学合情推理与演绎推理课件.ppt_第1页
第1页 / 共32页
高中数学合情推理与演绎推理课件.ppt_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《高中数学合情推理与演绎推理课件.ppt》由会员分享,可在线阅读,更多相关《高中数学合情推理与演绎推理课件.ppt(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高中数学合情推理与演绎高中数学合情推理与演绎推理课件推理课件现在学习的是第1页,共32页 3 37 71010 3 3171720201313171730301010 3 37 72020 3 317173030 13 1317176 6 6 63+33+33+33+3,8 8 8 83+5,3+5,3+5,3+5,101010105+5,5+5,5+5,5+5,100010001000100029+97129+97129+97129+971,1002=139+863,1002=139+863,1002=139+863,1002=139+863,猜想任何一个不小于猜想任何一个不小于猜想任何一个

2、不小于猜想任何一个不小于6 6的的的的偶数都等于两个奇质数的和偶数都等于两个奇质数的和偶数都等于两个奇质数的和偶数都等于两个奇质数的和.数学皇冠上璀璨的明珠数学皇冠上璀璨的明珠数学皇冠上璀璨的明珠数学皇冠上璀璨的明珠哥德巴赫猜想哥德巴赫猜想哥德巴赫猜想哥德巴赫猜想一个规律:一个规律:一个规律:一个规律:偶数奇质数奇质数偶数奇质数奇质数偶数奇质数奇质数偶数奇质数奇质数现在学习的是第2页,共32页 由某类事物的由某类事物的 具有某些特征具有某些特征,推出该类事物的推出该类事物的 都具有这些特征都具有这些特征的推理的推理,或者由或者由 概括出概括出 的推理的推理,称为称为归纳推理归纳推理(简称归纳简

3、称归纳).).部分对象部分对象全部对象全部对象个别事实个别事实一般结论一般结论现在学习的是第3页,共32页 1,3,5,7,由此你猜想出第,由此你猜想出第个数是个数是_.这就是从这就是从部分到整体部分到整体,从从个别到一般个别到一般的的归纳推理归纳推理.现在学习的是第4页,共32页 1.已知数列已知数列 的第一项的第一项 =1,且且 (1,2,3,),请归纳出这个数列的通项公式为请归纳出这个数列的通项公式为_.现在学习的是第5页,共32页 2.2.数一数图中的凸多面体的面数数一数图中的凸多面体的面数数一数图中的凸多面体的面数数一数图中的凸多面体的面数F F、顶点数、顶点数、顶点数、顶点数V V

4、和棱数和棱数和棱数和棱数E,E,然后探求然后探求然后探求然后探求面数面数面数面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E E之间的关系之间的关系之间的关系之间的关系.四棱柱四棱柱四棱柱四棱柱三棱锥三棱锥三棱锥三棱锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱锥四棱锥四棱锥四棱锥尖顶塔尖顶塔尖顶塔尖顶塔现在学习的是第6页,共32页凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体

5、三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔现在学习的是第7页,共32页凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔四棱柱四棱柱四棱柱四棱柱6 68 81212现在学习的是第8页,共32页凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三

6、棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥现在学习的是第9页,共32页凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体现在学习的是第10页,共32页凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱现在学习的是第11页,共32页凸多面体

7、凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱558四棱锥四棱锥现在学习的是第12页,共32页凸多面体凸多面体面数(面数(F F)顶顶点数(点数(V V)棱数(棱数(E E)四棱柱四棱柱三棱三棱锥锥八面体八面体三棱柱三棱柱四棱四棱锥锥尖尖顶顶塔塔四棱柱四棱柱6812644三棱锥三棱锥1286八面体八面体695三棱柱三棱柱558四棱锥四棱锥9169尖顶塔尖顶塔现在学习的是第13页,共32页6 69 95 59 95 55 5

8、8 816169 9凸多面体凸多面体凸多面体凸多面体面数(面数(面数(面数(F F F F)顶顶顶顶点数(点数(点数(点数(V V V V)棱数(棱数(棱数(棱数(E E E E)四棱柱四棱柱四棱柱四棱柱三棱三棱三棱三棱锥锥锥锥八面体八面体八面体八面体三棱柱三棱柱三棱柱三棱柱四棱四棱四棱四棱锥锥锥锥尖尖尖尖顶顶顶顶塔塔塔塔6 68 812126 64 44 412128 86 6猜想凸多面体的面数猜想凸多面体的面数猜想凸多面体的面数猜想凸多面体的面数F F、顶点数、顶点数、顶点数、顶点数V V和棱数和棱数和棱数和棱数E E之间的关系式为:之间的关系式为:之间的关系式为:之间的关系式为:FVE2

9、欧拉公式欧拉公式现在学习的是第14页,共32页(2004春季上海春季上海)根据图中根据图中5个图形及相应点的个数的个图形及相应点的个数的变化规律变化规律,试猜测第试猜测第n个图形中有个图形中有 个点个点.(1)(2)(3)(4)(5)练习练习现在学习的是第15页,共32页归纳推理的基础归纳推理的基础归纳推理的作用归纳推理的作用归纳推理归纳推理观察、分析观察、分析发现新事实、获发现新事实、获得新结论得新结论由部分到整体、由部分到整体、个别到一般的推理个别到一般的推理注意注意归纳推理的结论不一定成立归纳推理的结论不一定成立现在学习的是第16页,共32页在创造发明中,在创造发明中,人们经常应用人们经

10、常应用类比类比现在学习的是第17页,共32页可能有生命存在可能有生命存在有生命存在有生命存在温度适合生物的生存温度适合生物的生存一年中有四季的变更一年中有四季的变更有大气层有大气层有大气层有大气层大部分时间的温度适合地大部分时间的温度适合地球上某些已知生物的生存球上某些已知生物的生存一年中有四季的变更一年中有四季的变更有大气层有大气层行星、围绕太阳运行、绕行星、围绕太阳运行、绕轴自转轴自转行星、围绕太阳运行、绕轴行星、围绕太阳运行、绕轴自转自转火星火星火星火星地球地球地球地球现在学习的是第18页,共32页火星火星与与地球地球类比的思维过程:类比的思维过程:火星火星地球地球存在类似特征存在类似特

11、征存在类似特征存在类似特征地球上有生命存在地球上有生命存在地球上有生命存在地球上有生命存在猜测火星上也可能有生命存在猜测火星上也可能有生命存在猜测火星上也可能有生命存在猜测火星上也可能有生命存在现在学习的是第19页,共32页 由由两类对象两类对象具有具有某些某些类似特征类似特征和其中和其中一类对象的某些一类对象的某些已知特征已知特征,推出推出另一类对另一类对象也具有象也具有这些特征这些特征的推理称为的推理称为类比推理类比推理.现在学习的是第20页,共32页.试将平面上的圆与空间的球进行类比试将平面上的圆与空间的球进行类比现在学习的是第21页,共32页圆的定义:平面内到一个定点的距离等于定长圆的

12、定义:平面内到一个定点的距离等于定长的点的集合的点的集合.球的定义:到一个定点的距离等于定长的点的集球的定义:到一个定点的距离等于定长的点的集合合.圆圆弦弦直径周直径周长长面积面积球球截面圆截面圆大圆大圆表面积表面积体积体积现在学习的是第22页,共32页圆的概念和性质圆的概念和性质球的类似概念和性质球的类似概念和性质圆心圆心圆心圆心与与与与弦弦弦弦(非直径非直径非直径非直径)中点连线垂直中点连线垂直中点连线垂直中点连线垂直于弦于弦于弦于弦.与与与与圆心圆心圆心圆心距离相等的两距离相等的两距离相等的两距离相等的两弦弦弦弦相等相等相等相等;与与与与圆心圆心圆心圆心距离不等的两距离不等的两距离不等的

13、两距离不等的两弦弦弦弦不等不等不等不等,距距距距圆圆圆圆心心心心较近的较近的较近的较近的弦弦弦弦较长较长较长较长.以点以点以点以点P(xP(x0 0,y,y0 0)为圆心为圆心为圆心为圆心,r,r为半径的为半径的为半径的为半径的圆的方程为圆的方程为圆的方程为圆的方程为(x-x(x-x0 0)2 2(y-(y-y y0 0)2 2=r=r2 2.球心球心球心球心与与与与截面圆截面圆截面圆截面圆(不经过球心的截面圆不经过球心的截面圆不经过球心的截面圆不经过球心的截面圆)圆心连线垂直于截面圆圆心连线垂直于截面圆圆心连线垂直于截面圆圆心连线垂直于截面圆.与与与与球心球心球心球心距离相等的两距离相等的两

14、距离相等的两距离相等的两截面圆截面圆截面圆截面圆面积面积面积面积相等相等相等相等;与与与与球心球心球心球心距离不等的两距离不等的两距离不等的两距离不等的两截面圆截面圆截面圆截面圆面积不等面积不等面积不等面积不等,距距距距球心球心球心球心较近的较近的较近的较近的截面圆截面圆截面圆截面圆面积较大面积较大面积较大面积较大.以点以点以点以点P(xP(x0 0,y,y0 0,z,z0 0)为球心为球心为球心为球心,r,r为半径为半径为半径为半径的球的方程为的球的方程为的球的方程为的球的方程为(x-x(x-x0 0)2 2+(y-y+(y-y0 0)2 2+(z-z+(z-z0 0)2 2=r=r2 2.

15、现在学习的是第23页,共32页三角形勾股定理a2+b2=c2S12+S22+S32=S2现在学习的是第24页,共32页类比推理类比推理类比推理类比推理以以旧旧的知识为基础的知识为基础,推测推测新新的的结果,具有结果,具有发现的功能发现的功能由由特殊到特殊特殊到特殊的推理的推理类比推理的结论类比推理的结论不一定成立不一定成立注意注意现在学习的是第25页,共32页类比推理类比推理由由特殊到特殊特殊到特殊的推理的推理;以旧的知识为基础以旧的知识为基础,推测推测新新新新的结果;的结果;结论不一定成立结论不一定成立.归纳推理归纳推理由部分到整体、由部分到整体、由部分到整体、由部分到整体、特殊到一般特殊到

16、一般的推理的推理的推理的推理;以观察分析为基础以观察分析为基础,推测推测新新新新的结论的结论;具有具有发现发现发现发现的功能的功能的功能的功能;结论不一定成立结论不一定成立.具有具有发现发现发现发现的功能的功能;现在学习的是第26页,共32页 小结小结归纳推理和类比推理的过程归纳推理和类比推理的过程归纳推理和类比推理的过程归纳推理和类比推理的过程从具体问从具体问题出发题出发观察、分析、观察、分析、比较、联想比较、联想归纳、归纳、类比类比提出提出猜想猜想通俗地说,合情推理是指通俗地说,合情推理是指“合乎情理合乎情理”的推理的推理.合情推理合情推理归纳推理归纳推理类比推理类比推理现在学习的是第27

17、页,共32页 传说在古老的印度有一座神庙,神庙中有三根针和套在一根针传说在古老的印度有一座神庙,神庙中有三根针和套在一根针传说在古老的印度有一座神庙,神庙中有三根针和套在一根针传说在古老的印度有一座神庙,神庙中有三根针和套在一根针上的上的上的上的64646464个圆环个圆环个圆环个圆环.古印度的天神指示他的僧侣们按下列规则古印度的天神指示他的僧侣们按下列规则古印度的天神指示他的僧侣们按下列规则古印度的天神指示他的僧侣们按下列规则,把圆环从把圆环从把圆环从把圆环从一根针上全部移到另一根针上,第三根针起一根针上全部移到另一根针上,第三根针起一根针上全部移到另一根针上,第三根针起一根针上全部移到另一

18、根针上,第三根针起“过渡过渡过渡过渡”的作用的作用的作用的作用.1.1.1.1.每次只能移动每次只能移动每次只能移动每次只能移动1 1 1 1个圆环;个圆环;个圆环;个圆环;2.2.2.2.较大的圆环不能放在较小的圆环上面较大的圆环不能放在较小的圆环上面较大的圆环不能放在较小的圆环上面较大的圆环不能放在较小的圆环上面.如果有一天,僧侣们将这如果有一天,僧侣们将这如果有一天,僧侣们将这如果有一天,僧侣们将这64646464个圆环全部移到另一根针上,那么世界末日个圆环全部移到另一根针上,那么世界末日个圆环全部移到另一根针上,那么世界末日个圆环全部移到另一根针上,那么世界末日就来临了就来临了就来临了

19、就来临了.请你试着推测:把请你试着推测:把请你试着推测:把请你试着推测:把 个圆环从个圆环从个圆环从个圆环从1 1 1 1号针移到号针移到号针移到号针移到3 3 3 3号针号针号针号针,最少需要移动多少次最少需要移动多少次最少需要移动多少次最少需要移动多少次?1 12 23 3游戏:河内塔(游戏:河内塔(Tower of HanoiTower of Hanoi)现在学习的是第28页,共32页n=1时时,现在学习的是第29页,共32页n=2时时,n=1时时,现在学习的是第30页,共32页n=3时时,n=2时时,n=1时时,现在学习的是第31页,共32页n=2时时,n=1时时,n=3时时,现在学习的是第32页,共32页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁