第5章停留时间分布与反应器的流动模型dep.pptx

上传人:jix****n11 文档编号:87239285 上传时间:2023-04-16 格式:PPTX 页数:123 大小:1.81MB
返回 下载 相关 举报
第5章停留时间分布与反应器的流动模型dep.pptx_第1页
第1页 / 共123页
第5章停留时间分布与反应器的流动模型dep.pptx_第2页
第2页 / 共123页
点击查看更多>>
资源描述

《第5章停留时间分布与反应器的流动模型dep.pptx》由会员分享,可在线阅读,更多相关《第5章停留时间分布与反应器的流动模型dep.pptx(123页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第五章第五章 停留时间分布与反应器的流动模型停留时间分布与反应器的流动模型5.1 停留时间分布5.2 理想反应器的停留时间分布5.3 非理想流动模型5.4 流动反应器中流体的混合1 1 在第3 章和第4章中讨论了两种不同类型的流动反应器全混流反应器和活塞流反应器。在相同的情况下,两者的操作效果有很大的差别,究其原因是由于反应物料在反应器内的流动状况不同,即停留时间分布不同。前面处理连续釜式反应器的设计时使用全混流假定,处理管式反应器问题时则使用了活塞流的假定;如果不符合这两种假定,就需要建立另外的流动模型。2 2 本章要解决的问题:1.阐明流动系统的停留时间分布的定量描述及其实验测定方法;2.

2、建立非理想流动模型;3.在所建立模型的基础上,说明该类反应器的性能和设计计算;4.介绍有关流动反应器内流体混合问题,阐明几个基本概念。3 35.1 停留时间分布 反应物料在反应器内停留时间越长,反应的进行得越完反应物料在反应器内停留时间越长,反应的进行得越完全。对于全。对于间歇反应器间歇反应器,在任何时刻下反应器内所有物料在其,在任何时刻下反应器内所有物料在其中的停留时间都是一样,中的停留时间都是一样,不存在停留时间分布问题不存在停留时间分布问题。对于对于流动系统流动系统,由于流体是连续的,而,由于流体是连续的,而流体分子流体分子的运动又的运动又是无序的,所有分子都遵循同一途径向前移动是不可能

3、的,是无序的,所有分子都遵循同一途径向前移动是不可能的,完全完全是一个随机过程是一个随机过程。但是并不排除。但是并不排除流体粒子流体粒子会存在大体相会存在大体相等的情况,第等的情况,第4章对管式反应器所作的活塞流假定就是基于章对管式反应器所作的活塞流假定就是基于这一情况。这一情况。停留时间:停留时间:流体从进入反应器系统到离开系统总共经历的时间,流体从进入反应器系统到离开系统总共经历的时间,即流体从系统的进口到出口所耗费的时间。即流体从系统的进口到出口所耗费的时间。4 4u沟沟流流回回流流存在速度分布存在速度分布 存在死区和短路现象存在死区和短路现象 存在沟流和回流存在沟流和回流 偏离理想流动

4、模式,反应结果与理想反应器的计算值具有偏离理想流动模式,反应结果与理想反应器的计算值具有较大的差异。较大的差异。DeadzoneShortcircuiting5.1 停留时间分布形成停留时间分布可能的原因有:形成停留时间分布可能的原因有:5 55.1 停留时间分布3.3.流动状况对反应的影响流动状况对反应的影响釜式和管式反应器中流体的流动状况明显不同,通釜式和管式反应器中流体的流动状况明显不同,通过前面对釜式和管式反应器的学习,可以发现:过前面对釜式和管式反应器的学习,可以发现:对于单一反应,反应器出口的转化率与器内的流动对于单一反应,反应器出口的转化率与器内的流动状况有关;状况有关;对于复合

5、反应,反应器出口目的产物的分布与流动对于复合反应,反应器出口目的产物的分布与流动状况有关。状况有关。6 6全混流反应器:机械混合最大全混流反应器:机械混合最大 逆向混合最大逆向混合最大 返混程度无穷大返混程度无穷大平推流反应器:机械混合为零平推流反应器:机械混合为零 逆向混合为零逆向混合为零 返混程度等于零返混程度等于零间歇反应器:机械混全最大间歇反应器:机械混全最大 逆向混合为零逆向混合为零 返混程度等于零返混程度等于零 反应器内的返混程度不同反应器内的返混程度不同停留时间不同停留时间不同浓度分布浓度分布不同不同反应速率不同反应速率不同反应结果不同反应结果不同生产能力不同生产能力不同非理想流

6、动反应器:介于两种理想情况之间非理想流动反应器:介于两种理想情况之间,停留时间是停留时间是随机变量,因此停留时间分布是一种概率分布。随机变量,因此停留时间分布是一种概率分布。7 7年龄年龄 反应物料质点从进入反应器算起已经停留的时间;是对仍留在反反应物料质点从进入反应器算起已经停留的时间;是对仍留在反应器中的物料质点而言的。应器中的物料质点而言的。寿命寿命 反应物料质点从进入反应器到离开反应器的时间;是对已经离开反反应物料质点从进入反应器到离开反应器的时间;是对已经离开反应器的物料质点而言的。应器的物料质点而言的。停留时间:停留时间:流体从进入反应器系统到离开系统总共经历的时间,即流体从系流体

7、从进入反应器系统到离开系统总共经历的时间,即流体从系统的进口到出口所耗费的时间。统的进口到出口所耗费的时间。几个概念:几个概念:8 8返混返混:又称逆向返混,又称逆向返混,不同年龄不同年龄的质点之间的混合。的质点之间的混合。是时间概念上的混合是时间概念上的混合相互联系:相互联系:寿命寿命指反应器出口流出流体的指反应器出口流出流体的年龄年龄实际测得的一般是寿命分布,应用价值大。停实际测得的一般是寿命分布,应用价值大。停留时间分布一般指的是寿命分布。留时间分布一般指的是寿命分布。9 9系统分类系统有闭式闭式系统和开式开式系统之分。闭式系统具有闭式边界,即进口和出口没有返混。反之,则为开式边界。RT

8、D(Residence Time distrubution)的应用对已有设备的RTD诊断,发现可能的问题;设备的设计与分析,建立适当的数学模型。10 10停留时间分布的定量描述停留时间分布的定量描述例:在连续操作的反应器内,如果在例:在连续操作的反应器内,如果在某一瞬间(某一瞬间(t=0)极快极快地向入口物流中加入地向入口物流中加入100个红色粒子个红色粒子,同时在系统的出口,同时在系统的出口处记下不同时间间隔流出的红色粒子数,结果如下表。处记下不同时间间隔流出的红色粒子数,结果如下表。停留时间范围停留时间范围tt+t0-22-33-44-55-66-77-88-99-1010-1111-12

9、12-14出口流中的出口流中的红色粒子数红色粒子数02612182217126410分率分率N/N00.020.060.120.180.220.170.120.060.040.010如果假定红色粒子和主流体之间除了颜色的差别以外,其余如果假定红色粒子和主流体之间除了颜色的差别以外,其余所有性质都完全相同,那么就可以认为这所有性质都完全相同,那么就可以认为这100个粒子的停留个粒子的停留时间分布就是主流体的停留时间分布。时间分布就是主流体的停留时间分布。11 11以时间t为横坐标,出口流中红色粒子数为纵坐标,将上表作图。表示停留时间为tt+t的物料占总进料的分率。12 12示踪剂改用红色流体红色

10、流体,连续检测,得到一条连续的停留时间分布曲线。在稳定连续流动系统中,同时进入反应器的N个流体粒子中,其停留时间为tt+dt的那部分粒子占总粒子数N的分率记作:13 13停留时间分布密度函数 被称为停留时间分布密度函数。此定义函数具有归一化的性质:停留时间分布密度具有如下的特性:停留时间分布密度具有如下的特性:因为当时间无限长时,因为当时间无限长时,t=0时刻加入的流体质点都会流出反应器,即时刻加入的流体质点都会流出反应器,即和E(t)dt 定义为在定义为在t=0时刻进入反应器的流体微元,在时刻进入反应器的流体微元,在t至至(t+dt)时间段内离开反应器的时间段内离开反应器的概率(分率),概率

11、(分率),即即 14 14停留时间分布函数 定义:在稳定连续流动系统中,同时进入反应器的N个流体粒子中,其停留时间小于t的那部分粒子占总粒子数N的分率,记作:具有如下特性:停留时间分布函数。总之,总之,F(t)永远为正值永远为正值15 15 或E(t)与与F(t)的关系的关系若若E(t)线已知,将其积分得到相应的线已知,将其积分得到相应的F(t)值;当值;当F(t)曲线已知,曲线已知,在线上的一点作切线,该直线的斜率等于相应的在线上的一点作切线,该直线的斜率等于相应的E(t)值值16 16)平均停留时间)平均停留时间令:无因次时间令:无因次时间:对于封闭系统中的流体,当流体密度维持不变时,其平

12、均停留时间等于如果一个流体粒子的停留时间介于(t,t+dt);则无因次停留时间介于(,+d)内。因为所指是同一事件,所以t和介于这一区间的概率相等。)停留时间分布函数的无因次化)停留时间分布函数的无因次化17 17F(t)本身是一累积概率,而是t的确定函数随机变量的确定性函数的概率与随机变量的概率相等停留时间分布密度函数积分停留时间分布函数求导数18 18二、停留时间分布的实验测定 停留时间分布实验测定方法是示踪响应法,通过用示踪剂来跟踪流体在系统内的停留时间。根据示踪剂加入方式示踪剂加入方式的不同,又可分为脉冲法脉冲法、阶跃法阶跃法及周期输入法周期输入法三种。19 19图 5.2 示踪剂输入

13、法20201.脉冲示踪法 图4.1-2 脉冲法测定停留时间分布示意图特点:在定常态操作的系统瞬间加入一定量的示踪剂,。21 21u 设加入示踪剂A的量为m,在无限长的时间,加入的示踪剂一定会完全离开系统。即:u出口物料中在系统内停留了tt+dt 时间的示踪剂量为QCA(t)dt,由E(t)的定义可知:2222注意:注意:1 1、物理量与浓度呈线性关系,可直接将物理、物理量与浓度呈线性关系,可直接将物理量代入求量代入求E(t)E(t).2 2、若测得的响应曲线托尾甚长,应尽量使输若测得的响应曲线托尾甚长,应尽量使输入的示踪计量已知,避免积分入的示踪计量已知,避免积分2323例5-1 流化床催化裂

14、化装置中的再生器,其作用系用空气燃烧硅铝催化剂上的积炭使之再生。进入再生器的空气流量为0.84kmol/s。现用氦气作示踪剂,采用脉冲法测定气体在再生器中的停留时间分布,氦的注入量为8.8410-3kmol。测得再生器出口气体中氦的浓度c(用氦与其他气体的摩尔比表示)和时间的关系如下:试求t=35s时的停留时间分布密度和停留时间分布函数。解:以 式即可求E(t)。题给的流量Q为进口的空气流量,气体的摩尔流量不变,出口流量仍为0.84kmol/s。242425252.阶跃示踪法 阶跃法是在某一瞬间t=0,将系统中作定常流动的流体切换切换成流量相同的含有示踪剂的流体,并在切换成第二流体的同时,在系

15、统出口处检测流出物料中示踪剂浓度变化。或者相反。26262.阶跃示踪法图5.1-3 阶跃法测定停留时间分布示意图输入函数2727 在切换成第二流体后的t-dtt时间间隔,示踪剂流入系统量为Q0C()dt,示踪剂流出系统量为Q0CA(t)dt,由F(t)定义可得:升阶法:升阶法:2828降阶法:降阶法:在切换成第二流体后的t t+dt时间间隔,检测到的示踪剂在系统中停留时间是大于时间t,比值C(t)/C(0)为停留时间大于t的物料所占的分数。2929不与研究的流体发生化学反应;易溶于流体中;其浓度低时容易检测;其浓度与待检测的物理量成线性关系;对于多相系统,示踪剂不发生从一个相到另一 个相的转移

16、(即不挥发到另一相或不被另一相吸等)。选择示踪剂时,应该注意保证以下几点原则:示踪剂的选择示踪剂的选择3030脉冲法和阶跃法的比较脉冲法和阶跃法的比较脉冲法阶跃法(升阶法)示踪剂注入方法瞬间加入,较困难将原有流股换成流量与其相同的示踪剂流股,易于实现E(t)可直接测得F(t)可直接测得31 3132325.3 停留时间分布函数的统计特征值 采用两个统计特征值:A、数学期望。代表均值(统计量的平均值),这里是:平均停留时间。B、方差。代表统计量的分散程度,这里是停留时间对均值的偏离程度。数学期望(平均停留时间):设连续型随机变量设连续型随机变量X的概率密度为的概率密度为f(x),),如果积分如果

17、积分 绝对收敛,绝对收敛,则称之为则称之为X的的数学期望数学期望,记为,记为E(X),即即 3333 随机变量随机变量X的方差表达了的方差表达了X的取值与其数学期望的取值与其数学期望的偏离程度的偏离程度.若若D(X)较小,则意味着较小,则意味着X的取值比较集的取值比较集中在数学期望中在数学期望E(X)的附近;反之的附近;反之,若若D(X)较大,则表较大,则表明明X的取值比较分散的取值比较分散.方差:方差:若若X是连续型随机变量,且其密度函数为是连续型随机变量,且其密度函数为f(x).则则E(X)数学期望数学期望34345.3 停留时间分布函数的统计特征值平均停留时间平均停留时间应是应是曲线的分

18、布中心,即曲线的分布中心,即在所围的面积的重心在在所围的面积的重心在t t坐标上的投影坐标上的投影 曲线曲线在数学上称在数学上称t t为为曲线对于坐标原点的曲线对于坐标原点的一次矩一次矩,又称,又称的的数学期望数学期望。数学期望(平均停留时间):3535 方差:方差:方差是停留时间分布离散程度离散程度的量度方差越小,越接近平推流对平推流,各物料质点的停留时间相等,故 方差为零。3636 无因次化无因次化3737例题 5.2 用(1)脉冲法;(2)升阶法;(3)降阶法分别测得一流动系统的响应曲线c(t),试推导平均停留时间 及方差 与c(t)的关系式。解:(1)脉冲法 由此可见通过响应曲线即可求

19、平均停留时间及方差。3838(2)升阶法阶跃输入的示踪剂浓度为c()3939图中带斜线部分的面积应与式(B)右边的积分值相等。采用与导出上式相同的方法可得图 5B 阶跃响应曲线由图可见,此带斜线的面积等于矩形OABE的面积减去面积OAB故有4040(3)降阶法可依照升阶法所用的方法导出,结果如下 式中T为出口流中示踪剂浓度等于零时的时间。41 41024681012141618202224014798521.510.60.20t/min 试计算平均停留时间及方差试计算平均停留时间及方差5.3脉冲法测得的停留时间分布4242000021244416646742252897257610880800

20、1256072014228392161.52438418118324200.612240220.24.496.8240004343例5.3 已知示踪物浓度曲线,求期望和方差.辛普森积分式,用两次曲线代替曲线近似积分当a和b很接近时,有所以有444445455.4 理想反应器的停留时间分布 一、活塞流模型一、活塞流模型根据活塞流定义,同时进入系统的流体粒子也同时离开系统。活塞流反应器的活塞流反应器的E(t)图图46465.4 理想反应器的停留时间分布5.4.1 活塞流模型模型特征:同时进入系统的流体质点将同时从出口流出.即出口质点有相同的寿命.假设在t=0时刻脉冲注射示踪剂,浓度曲线为 函数,则

21、在 时刻,示踪剂将全部流出,即:利用 函数的性质,有:4747图图5.2-1 活塞流的停留时间分布活塞流的停留时间分布活塞流反应器的停留时间分布函数为:4848二、全混流模型 考察有效体积为VR、进料体积流量为Q0的全混流反应器,若在某一瞬间t=0,将流体切换成流量相同的含有示踪剂A的流体,同时检测流出物料中示踪剂A浓度变化。49495.4.2 全混流模型假设进入反应器的示踪剂浓度为C0,则在单位时间内流入反应器的示踪剂量:流出反应器的示踪剂量:反应器内的示踪剂累积:微分方程:初始条件:积分50505.4.2 全混流模型根据F(t)的定义根据E(t)和F(t)关系 无因次化无因次化 51 51

22、图图5.2-2 全混流的停留时间分布全混流的停留时间分布 5252统计特征值 可见:可见:返混程度达到最大时,停留时间分布的无因次方差返混程度达到最大时,停留时间分布的无因次方差平推流时方差平推流时方差 实际反应器停留时间分布的方差应介于实际反应器停留时间分布的方差应介于0 01 1之间之间,值越大,值越大则停留时间分布越分散,因此,由模型模拟实际反应器时则停留时间分布越分散,因此,由模型模拟实际反应器时应从方差入手。应从方差入手。5353对于平推流反应器,对于平推流反应器,所有流体粒子的停留时间相等所有流体粒子的停留时间相等,且都,且都等于平均停留时间。等于平均停留时间。对于全混流反应器,对

23、于全混流反应器,停留时间小于平均停留时间的流体粒停留时间小于平均停留时间的流体粒子占全部流体的分率为:子占全部流体的分率为:使停留时间分布集中,可以提高反应器的生产强度。使停留时间分布集中,可以提高反应器的生产强度。0.6325454例5.4 利用示踪实验检验反应器内的流动特征是否是全混流流动模型.正阶跃实验的出口示踪剂浓度和分布函数关系:全混流反应器的分布函数为:比较A和B得出:上式代入t=z/u,无因次化得出5555目录5656小 结 1.全 混 流 2.活 塞 流 3.工业反应器 57575.5 非理想流动现象 停留时间分布是由多种原因造成的实际反应器偏离理想流动的原因有:(1)滞留区(

24、死区)的存在:定义:滞流区是指反应器中流体流动慢至几乎不流动的定义:滞流区是指反应器中流体流动慢至几乎不流动的 区域,故也叫死区区域,故也叫死区特征:停留时间分布密度函数特征:停留时间分布密度函数E()曲线拖尾很长曲线拖尾很长,对连续釜式反应器,若有滞留区会造成E(0)1 平均停留时间平均停留时间位置:滞流区主要产生于设备的死角中位置:滞流区主要产生于设备的死角中63631.滞流区的存在滞流区的存在 2-1-0.40.81.21.62.00E()oE()1-固定床反应器的实测固定床反应器的实测E()曲线曲线 E()出现严重拖尾出现严重拖尾 理想:理想:有滞流区的釜式反应器的有滞流区的釜式反应器

25、的E()=0时,时,E()1理想:理想:=0时,时,E()=1E()=(-1)64642.存在沟流与短路存在沟流与短路 沟流:固定床、填料塔以及滴溜床反应器中,由沟流:固定床、填料塔以及滴溜床反应器中,由于催化剂颗粒或填料装填不均匀,从而造成一个于催化剂颗粒或填料装填不均匀,从而造成一个低阻力通道,使得一部分流体快速从此通道流过低阻力通道,使得一部分流体快速从此通道流过而形成而形成 短路:流体在设备内的停留时间极短短路:流体在设备内的停留时间极短 特征:停留时间分布密度函数特征:停留时间分布密度函数E()曲线存在双峰曲线存在双峰 平均停留时间平均停留时间 小于小于VR/V065652.存在沟流

26、与短路存在沟流与短路 (a)(b)沟流与短路时的沟流与短路时的E()曲线曲线(a)沟流,()沟流,(b)短路)短路 tE(t)tE(t)66663.循环流循环流 在实际的釜式反应器、鼓泡塔和流化床反应器中在实际的釜式反应器、鼓泡塔和流化床反应器中 都存在着不同程度的流体循环运动都存在着不同程度的流体循环运动特征:停留时间分布密度函数特征:停留时间分布密度函数E()曲线存在多峰曲线存在多峰tE(t)存在循环流时的存在循环流时的E(t)曲线)曲线 67674.流体流速分布不均匀流体流速分布不均匀 若流体在反应器内呈层流流动,其与活塞流的偏离十分若流体在反应器内呈层流流动,其与活塞流的偏离十分明显。

27、层流流速分布呈抛物线状,可由径向抛物线分布明显。层流流速分布呈抛物线状,可由径向抛物线分布导出层流反应器的停留时间分布密度函数导出层流反应器的停留时间分布密度函数特征:特征:E()=0,0.5 E()=1/(22),0.50.20.40.60.8 1.01.21.4OE()层层流反流反应应器的停留器的停留时间时间分布分布68685.扩散扩散 由于分子扩散及涡流扩散的存在而造成了流体由于分子扩散及涡流扩散的存在而造成了流体微元间的混合,使停留时间分布偏离理想流动微元间的混合,使停留时间分布偏离理想流动状况状况实际反应器中可能存在其中几种。实际反应器中可能存在其中几种。实际反应器中可能存在其中几种

28、。实际反应器中可能存在其中几种。利用利用利用利用RTDRTD诊断反应器内流动状况诊断反应器内流动状况诊断反应器内流动状况诊断反应器内流动状况69695.6 非理想流动模型 测算非理想反应器的转化率及收率,需要对其流动状况建立适宜的流动模型。建模的依据:该反应器的停留时间分布 应用的技巧:对理想流动模型进行修正,或将理想流动模型与滞留区、沟流和短路等作不同的组合。计算方法:Step1:测量反应器的停留时间分布曲线 Step2:建立适宜的流动模型依据RTD曲线 Step3:确定模型参数通过实测RTD数据 Step4:计算转化率和收率通过流动模型和反应动力学数据7070一、离析流模型(没有模型参数)

29、假定假定:反应器内的流体粒子之间不存在任何形式的物不存在任何形式的物质交换质交换,那么流体粒子就像一个有边界的个体有边界的个体,从反应器的进口向出口运动,这样的流动叫做离析流离析流。特点:特点:由于每个流体粒子与其周围不发生任何关系,就像一个间歇反应器一样进行反应,其反应程度只取决于该粒子在反应器内的停留时间。71 71 引例:引例:实际反应器中诸多微粒具有独立身份,实际反应器中诸多微粒具有独立身份,每个每个流体微元可以想象为一个小的间歇反应器,流体微元可以想象为一个小的间歇反应器,也也可以想象为实际反应器由不同长度管式反应可以想象为实际反应器由不同长度管式反应器并联组成。器并联组成。入口入口

30、出口出口应为各并联反应器转化率的积分平均。应为各并联反应器转化率的积分平均。一、离析流模型7272一、离析流模型设反应器进口的流体中反应物A的浓度为CAO反应时间t时浓度为CA(t)。停留时间在 t 到t+dt间的流体粒子所占的分率为E(t)dt这部分流体对反应器出口流体中A浓度 的贡献为C(t)E(t)dt,将所有这些贡献加和即得到反应器出口处A的平均浓度 :7373 只要反应器的停留时间分布停留时间分布和反应速率方程反应速率方程已知,便可预测反应器所能达到的转化率。根据转化率的定义,式(5.38)可改写成:所以 (5.39)离析流模型方程,也称为停留时间分布模型离析流模型方程,也称为停留时

31、间分布模型7474模型使用时应注意积分上限模型使用时应注意积分上限对于不可逆反应积分上限应为完全反应的时间t*,即反应物CA=0所需的时间。例如半级反应完全转化,CA=0E(t)曲线测定中要保证所有示踪流体都流出反应器7575例:例:等温下在反应体积为等温下在反应体积为的流动反应器内进行液相反应:的流动反应器内进行液相反应:该反应为二级反应,反应温度下的反应速率常数该反应为二级反应,反应温度下的反应速率常数 进料流量进料流量:A A的浓度的浓度:停留时间分布为:停留时间分布为:7676024681012141618202224014798521.510.60.20t/min 试计算离析流模型反

32、应器出口处试计算离析流模型反应器出口处A A的转化率的转化率7777解:解:A A的转化率可由模型方程求取的转化率可由模型方程求取应先求出应先求出与与t t的关系,积分二级反应速率方程:的关系,积分二级反应速率方程:积分:积分:得:得:7878还应先求出还应先求出00242220181614121086420t7979转化率为:转化率为:若用平推流:若用平推流:两者结果相近,原因是该反应器的停留时间分布与平推流两者结果相近,原因是该反应器的停留时间分布与平推流偏离不算太大的缘故。偏离不算太大的缘故。8080二、多釜串联模型(N为模型参数)1.模型假定条件:每一级内为全混流;釜间无返混;各釜体积

33、相同实际反应器的流动状况可以用多个串联的同体积全混反应器来描述,串联的釜数N就是模型参数。对于两种理想的反应器,其模型参数分别为:全混釜:N=1;活塞流:N=。81 812.多釜串联模型的停留时间分布 设反应器总体积为VR,并假想由N个体积相等的全混釜串联组成,釜间无任何返混。参考图5.16,若对系统施加阶跃示踪剂A后,作示踪剂的物料衡算示踪剂的物料衡算多釜串联模型8282对第p釜作物料衡算:或阶跃输入,初始条件P=1:8383P=2:将C1(t)代入得利用数学归纳法数学归纳法可得第第N个釜个釜的结果为:8484以代入上式得:无因次化形式为:多釜串联系统的停留时间分布函数式这里,为系统的总平均

34、停留时间 8585上式对求导:多釜串联系统的停留时间分布密度式多釜串联模型的F()图多釜串联模型的E()图86863.多釜串联模型特征值及模型参数 无因次平均停留时间:无因次方差:8787实际反应器方差应介于0与1之间。模型参数N当与全混流模型一致;而当与活塞流模型相一致。8888图5.16 多釜串联图示8989例5.6 求N=?VR=1735cm3,Q=40.2cm3/min,m=4.95g9090三、轴向扩散模型(模型参数Pe)由于分子扩散、涡流扩散以及流速分布的不均匀等原因,而使流动状况偏离理想流动时,可用轴向扩散模型来模拟。91 911.模型假定:流体以恒定的流速u 通过系统;在垂直于

35、流体运动方向的横截面上径向浓度分布均一;在流动方向上流体存在扩散过程,以轴向扩散系数Da表示这些因素的综合作用。同一反应器内轴向扩散系数在管内恒定,不随时间及位置而变。管内不存在死区或短路流。适用对象:偏离活塞流的管式反应器适用对象:偏离活塞流的管式反应器92922.轴向扩散模型的建立 设管横截面积为A,在管内轴向位置Z处截取微元长度dZ,作物料衡算。轴向扩散模型物料衡算示意图 cdzLuc0uuu9494目录对微元体积作物料衡算A对流输入项:B对流输出项:C扩散流出项:D扩散流入项:E累积项:衡算式 9595 流入:流出:累积:假定系统内不发生化学反应,根据流入流出+累积,将上列各项代入整理

36、后得:此即轴向扩散模型方程。9696说明:1、上式为一偏微分方程,有两个变量t和Z;2、此模型为活塞流模型+扩散模型扩散项:DA=0时,上式变为活塞流模型:3、轴向扩散模型可模拟任意非理想流动。9797其中,Pe为Peclet准数无因次化整理得到当Pe0时,属于全混流情况。当Pe时,属活塞流情况,它表示对流流动和扩散传递的相对大小,反映了返混的程度。9898对于闭式的边界条件平均停留时间与方差为:平均停留时间与方差为:9999各种边界条件下的平均停留时间和方差闭式边界闭开或开闭式边界开式边界100100设计反应器时,若停留时间分布未知,还可根据关联式里估设计反应器时,若停留时间分布未知,还可根

37、据关联式里估算算PePe 若为湍流,则若为湍流,则式中:式中:例如:对于空管反应器,在例如:对于空管反应器,在 的范围内,可由的范围内,可由估算。估算。施密特准数施密特准数1011015.7 非理想反应器的计算非理想流动模型有:(1)离析流模型;(2)多釜串模型;(3)扩散模型。离析流模型反应器的停留时间分布和反应动力学方程多釜串模型只要模型参数N和反应动力学方程扩散模型根据模型的特点和反应动力学方程,建立模型102102用多釜串联模型来模拟一个实际反应器的步骤 1.测定该反应器的停留时间分布;2.求出该分布的方差;3.求模型参数N;4.从第一釜开始,逐釜计算。采用上述方法来估计模型参数N的值

38、时,可能出现N为非整数的情况,用四舍五入的办法圆整成整数是一个粗略的近似处理方法,精确些的办法是把小数部分视作一个体积较小的反应器。103103选择微元体、对关键组分进行物料衡算,得到计算方程:对定态操作的反应器,边界条件为:对于n 级反应,速率方程为 由于方程的非线性,除了零级和一级反应有解析解之外,其余均得不到解析解,只有数值。104104对于一级反应(n),得到解析解为:当 时(活塞流)当 时(全混流)105105一级反应转化率随模型参数和空时的变化:二级不可逆反应的转化率106106 可见,具有闭式边界条件的轴向扩散模型,根据模型参数的可见,具有闭式边界条件的轴向扩散模型,根据模型参数

39、的取值不同,可以体现从平推流到全混流之间的任何返混情况。取值不同,可以体现从平推流到全混流之间的任何返混情况。实际反应器的转化率随实际反应器的转化率随Pe倒数的减小而增加。空时越大,倒数的减小而增加。空时越大,流动状况偏离理想流动的影响也越大。流动状况偏离理想流动的影响也越大。当当n1时,难以求出解析解,可用数值法求解。时,难以求出解析解,可用数值法求解。二级反应的转化率受返混的影响比一级反应大。二级反应的转化率受返混的影响比一级反应大。反应级数越高,返混对反应结果的影响越大。反应级数越高,返混对反应结果的影响越大。107107例5.8 一级液相反应,CSTR中,在某个工业反应器中实测RTD的

40、求:预测出口转化率?解:由CSTR设计方程1)多釜串联模型,模型参数对等温液相一级反应,等体积多釜串联系统有 1081082)轴向扩散模型,闭式边界,模型参数Pe有应用式5.68,得出从计算结果看出,由于工业反应器中流动更接近理想平推流模型,其转化率远大于CSTR,而接近PFR模型 CSTR8-CSTRPFR+DaPFRxAf0.820.97280.97560.98951091091101105.8 流动反应器中流体的混合 几个概念几个概念完全离析:流体粒子之间不发生混合,这种状完全离析:流体粒子之间不发生混合,这种状态称为完全离析;相应的流体称为宏观流体;态称为完全离析;相应的流体称为宏观流

41、体;微观混合:流体粒子之间发生混合,且混合是微观混合:流体粒子之间发生混合,且混合是分子尺度的,则这种混合成为微观混合;相应分子尺度的,则这种混合成为微观混合;相应的流体称为微观流体。的流体称为微观流体。两种极端的混合状态两种极端的混合状态1111112 混合态对反应的影响1)对反应速率的影响)对反应速率的影响设有两个体积相同,浓度分别为设有两个体积相同,浓度分别为级不可逆反应级不可逆反应的流体粒子,进行的流体粒子,进行若为宏观流体,则各自的反应速率为:若为宏观流体,则各自的反应速率为:112112平均反应速率为:平均反应速率为:若为微观流体若为微观流体,则混合后,则混合后A A的浓度为的浓度

42、为 平均反应速率为:平均反应速率为:113113 =1时 反应速率与浓度成线性关系;1时 反应速率与浓度的关系曲线为凹曲线;1时 反应速率与浓度的关系曲线为凸曲线;114114对宏观流体:对微观流体:115115两种情况下反应速率的相对大小,与两种情况下反应速率的相对大小,与值有关:值有关:时时 即微观混合降低了反应速率;即微观混合降低了反应速率;时时 即微观混合提高了反应速率;即微观混合提高了反应速率;时时 对于一级反应,宏观流体和微观流体的反应效果对于一级反应,宏观流体和微观流体的反应效果是一样的。是一样的。116116流体混合对化学反应器工况的影响间歇反应器,流体粒子的停留时间相同,因此

43、无影响;间歇反应器,流体粒子的停留时间相同,因此无影响;平推流反应器,由于没有返混,且同一截面处流体粒子的平推流反应器,由于没有返混,且同一截面处流体粒子的停留时间相同,组成相同,也没有影响;停留时间相同,组成相同,也没有影响;全混流反应器,由于存在返混,且同一截面处流体粒子的全混流反应器,由于存在返混,且同一截面处流体粒子的停留时间不同,组成也不同,因此存在影响。停留时间不同,组成也不同,因此存在影响。117117混合的早晚混合的早晚对系统工况的影响对系统工况的影响结论:()n=1,无影响(2)n1,有影响118118流体混合早晚对化学反应器工况的影响先看一例题:若相互串联的全混流反应器与平

44、推流反应器先看一例题:若相互串联的全混流反应器与平推流反应器的空时均为的空时均为1min,进口流体的,进口流体的CA0=1kmol/m3,k=1(min-1)及及(1m3/kmolmin,试分别针对(,试分别针对(1)一级反应;()一级反应;(2)二)二级反应,计算下列两种串联方式的转化率。级反应,计算下列两种串联方式的转化率。119119解:解:(1)一级反应)一级反应对情况(对情况(a):):对情况(对情况(b):):两种情况相同。两种情况相同。120120(2)对情况(对情况(a):):对情况(对情况(b):):121121情况(情况(a)属于晚混和,在浓度水平低下混合;)属于晚混和,在浓度水平低下混合;情况(情况(b)属于早混和,在浓度水平高下混合;)属于早混和,在浓度水平高下混合;由计算结果看出:由计算结果看出:对一级反应,没有区别;对一级反应,没有区别;其它级数有影响,对二级反应而言,晚混和有利。其它级数有影响,对二级反应而言,晚混和有利。122122流体混合对反应速率的影响123123

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 施工组织

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁