《D110闭区间上连续函数的性质74108.pptx》由会员分享,可在线阅读,更多相关《D110闭区间上连续函数的性质74108.pptx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
注意:若函数在开区间上连续,结论不一定成立.一一、最值定、最值定理理定理1.1.在闭区间上连续的函数即:设则使值和最小值.或在闭区间内有间断 在该区间上一定有最大(证明略)点,第1页/共9页例如,无最大值和最小值 也无最大值和最小值 又如,第2页/共9页二、介值定理二、介值定理由定理 1 可知有证:设上有界.定理2.(零点定理)至少有一点且使(证明略)推论 在闭区间上连续的函数在该区间上有界.第3页/共9页定理定理3.(介值定理介值定理)设 且则对 A 与 B 之间的任一数 C,一点证:作辅助函数则且故由零点定理知,至少有一点使即推论:在闭区间上的连续函数使至少有必取得介于最小值与最大值之间的任何值.第4页/共9页内容小结内容小结在上达到最大值与最小值;上可取最大与最小值之间的任何值;4.当时,使必存在上有界;在在第5页/共9页1.任给一张面积为 A 的纸片(如图),证明必可将它思考与练习思考与练习一刀剪为面积相等的两片.提示:建立坐标系如图.则面积函数因故由介值定理可知:第6页/共9页则证明至少存在使提示:令则易证2.设设作业P74(习题110)2;3;5一点习题课 第7页/共9页备用题备用题 至少有一个不超过 4 的 证:证明令且根据零点定理,原命题得证.内至少存在一点在开区间显然正根.第8页/共9页感谢您的观看!第9页/共9页