圆锥曲线的综合A.pptx

上传人:莉*** 文档编号:87148436 上传时间:2023-04-16 格式:PPTX 页数:58 大小:1.02MB
返回 下载 相关 举报
圆锥曲线的综合A.pptx_第1页
第1页 / 共58页
圆锥曲线的综合A.pptx_第2页
第2页 / 共58页
点击查看更多>>
资源描述

《圆锥曲线的综合A.pptx》由会员分享,可在线阅读,更多相关《圆锥曲线的综合A.pptx(58页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 1曲线与方程曲线与方程 一般地,在平面直角坐标系中,如果一般地,在平面直角坐标系中,如果某曲线某曲线C上的点与一个二元方程上的点与一个二元方程f(x,y)0的实数解建立了如下关系:的实数解建立了如下关系:(1)曲线上点的坐标都是曲线上点的坐标都是 (2)以这个方程的解为坐标的点都是以这个方程的解为坐标的点都是 那么这个方程叫做那么这个方程叫做 ,这条曲线叫做,这条曲线叫做 基础知识梳基础知识梳理理这个方程的解这个方程的解曲线的方程曲线的方程方程的曲线方程的曲线曲线曲线上的点上的点第1页/共58页基础知识梳基础知识梳理理如果只满足第如果只满足第(2)个条件,会个条件,会出现什么情况?出现什么情

2、况?【思考思考提示提示】若只满足若只满足“以以这个方程的解为坐标的点都是曲线这个方程的解为坐标的点都是曲线上的点上的点”,则这个方程可能只是部,则这个方程可能只是部分曲线的方程,而非整个曲线的方分曲线的方程,而非整个曲线的方程,如分段函数的解析式程,如分段函数的解析式第2页/共58页2直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系基础知识梳基础知识梳理理第3页/共58页(1)若若a0,b24ac,则,则0,直线,直线l与圆锥曲线有与圆锥曲线有 交点交点0,直线,直线l与圆锥曲线有与圆锥曲线有 公共点公共点0,直线,直线l与圆锥曲线与圆锥曲线 公共点公共点(2)若若a0,当圆锥曲线为双曲线时,

3、当圆锥曲线为双曲线时,l与双曲线的渐近线与双曲线的渐近线 ;当圆锥曲线为抛物;当圆锥曲线为抛物线时,线时,l与抛物线的对称轴与抛物线的对称轴 基础知识梳基础知识梳理理平行平行平行平行一一无无两两第4页/共58页基础知识梳基础知识梳理理第5页/共58页1过点过点(2,4)作直线与抛物线作直线与抛物线y28x只有一个公共点,这样的直线有只有一个公共点,这样的直线有()A1条条B2条条C3条条 D4条条答案答案:B三基能力强三基能力强化化第6页/共58页2已知两定点已知两定点A(2,0),B(1,0),如果动点,如果动点P满足满足|PA|2|PB|,则点,则点P的轨迹所围成的图形的面积等于的轨迹所围

4、成的图形的面积等于()A B4C8 D9答案答案:B三基能力强三基能力强化化第7页/共58页A相交相交 B相切相切C相离相离 D不确定不确定答案答案:A三基能力强三基能力强化化第8页/共58页三基能力强三基能力强化化第9页/共58页答案答案:x24y21三基能力强三基能力强化化第10页/共58页求轨迹方程的常用方法:求轨迹方程的常用方法:(1)直接法:直接利用条件建立直接法:直接利用条件建立x,y之间的关系之间的关系f(x,y)0.(2)待定系数法:已知所求曲线待定系数法:已知所求曲线的类型,先根据条件设出所求曲线的类型,先根据条件设出所求曲线的方程,再由条件确定其待定系数的方程,再由条件确定

5、其待定系数课堂互动讲课堂互动讲练练考点一考点一求动点的轨迹方程求动点的轨迹方程第11页/共58页(3)定义法:先根据条件得出动点的定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程接写出动点的轨迹方程(4)相关点法:动点相关点法:动点P(x,y)依赖于另依赖于另一动点一动点Q(x0,y0)的变化而变化,并且的变化而变化,并且Q(x0,y0)又在某已知曲线上,则可先用又在某已知曲线上,则可先用x,y的代数式表示的代数式表示x0,y0,再将,再将x0,y0代入代入已知曲线得要求的轨迹方程已知曲线得要求的轨迹方程课堂互动讲课堂互动

6、讲练练第12页/共58页(5)参数法:当动点参数法:当动点P(x,y)的坐的坐标之间的关系不易直接找到,也没标之间的关系不易直接找到,也没有相关点可用时,可考虑将有相关点可用时,可考虑将x,y均均用一中间变量用一中间变量(参数参数)表示,得参数表示,得参数方程,再消去参数得普通方程方程,再消去参数得普通方程课堂互动讲课堂互动讲练练第13页/共58页课堂互动讲课堂互动讲练练例例例例1 1第14页/共58页【思路点拨思路点拨】由已知易得动点由已知易得动点Q的轨迹方程,然后找出的轨迹方程,然后找出P点与点与Q点点的坐标关系,代入即可的坐标关系,代入即可课堂互动讲课堂互动讲练练第15页/共58页即即x

7、2(y2)232.所以点所以点Q的轨迹是以的轨迹是以C(0,2)为圆为圆心,以心,以3为半径的圆为半径的圆点点P是点是点Q关于直线关于直线y2(x4)的对称点的对称点动点动点P的轨迹是一个以的轨迹是一个以C0(x0,y0)为圆心,半径为为圆心,半径为3的圆,其中的圆,其中C0(x0,y0)是点是点C(0,2)关于直线关于直线y2(x4)的对称点,即直线的对称点,即直线y2(x4)过过CC0的中点,且与的中点,且与CC0垂直,垂直,课堂互动讲课堂互动讲练练第16页/共58页课堂互动讲课堂互动讲练练第17页/共58页即即x2(y2)232(*)设点设点P的坐标为的坐标为P(u,v),P、Q关于直线

8、关于直线l:y2(x4)对称,对称,课堂互动讲课堂互动讲练练第18页/共58页课堂互动讲课堂互动讲练练第19页/共58页代入方程代入方程(*)得得(3u4v32)2(4u3v26)2(35)2,化简得化简得u2v216u4v590(u8)2(v2)29.故动点故动点P的轨迹方程为的轨迹方程为(x8)2(y2)232.【规律小结规律小结】求动点的轨迹方程的一般步骤求动点的轨迹方程的一般步骤(1)建系建系建立适当的坐标系建立适当的坐标系(2)设点设点设轨迹上的任一点设轨迹上的任一点P(x,y)课堂互动讲课堂互动讲练练第20页/共58页(3)列式列式列出动点列出动点P所满足的所满足的关系式关系式(4

9、)代换代换依条件式的特点,选依条件式的特点,选用距离公式、斜率公式等将其转化为用距离公式、斜率公式等将其转化为x,y的方程式,并化简的方程式,并化简(5)证明证明证明所求方程即为符证明所求方程即为符合条件的动点轨迹方程合条件的动点轨迹方程课堂互动讲课堂互动讲练练第21页/共58页判断直线与圆锥曲线的公共点个数问判断直线与圆锥曲线的公共点个数问题有两种方法:题有两种方法:(1)代数法,即将直线与圆代数法,即将直线与圆锥曲线联立得到一个关于锥曲线联立得到一个关于x(或或y)的方程,的方程,方程根的个数即为交点个数,此时注意对方程根的个数即为交点个数,此时注意对二次项系数的讨论;二次项系数的讨论;(

10、2)几何法,即画出直几何法,即画出直线与圆锥曲线的图象,根据图象判断公共线与圆锥曲线的图象,根据图象判断公共点个数注意分类讨论和数形结合的思想点个数注意分类讨论和数形结合的思想方法方法课堂互动讲课堂互动讲练练考点二考点二直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系第22页/共58页课堂互动讲课堂互动讲练练例例例例2 2第23页/共58页【思路点拨思路点拨】(1)联立直线与联立直线与椭圆方程,整理成关于椭圆方程,整理成关于x的一元二次的一元二次方程,由于直线与椭圆有两个不同方程,由于直线与椭圆有两个不同的交点,则的交点,则0.(2)利用两向量共线的条件求解利用两向量共线的条件求解课堂互动讲课

11、堂互动讲练练第24页/共58页课堂互动讲课堂互动讲练练第25页/共58页课堂互动讲课堂互动讲练练第26页/共58页课堂互动讲课堂互动讲练练第27页/共58页课堂互动讲课堂互动讲练练第28页/共58页课堂互动讲课堂互动讲练练互动探究互动探究第29页/共58页课堂互动讲课堂互动讲练练第30页/共58页课堂互动讲课堂互动讲练练第31页/共58页解答弦长问题要注意避免出现解答弦长问题要注意避免出现两种错误:两种错误:(1)对直线对直线l斜率的存在斜率的存在性不作讨论而直接设为点斜式,性不作讨论而直接设为点斜式,出现漏解或思维不全造成步骤缺出现漏解或思维不全造成步骤缺失失(2)对二次项系数不为零或对二次

12、项系数不为零或0这个前提忽略而直接使用根与这个前提忽略而直接使用根与系数的关系系数的关系课堂互动讲课堂互动讲练练考点三考点三圆锥曲线中的弦长圆锥曲线中的弦长第32页/共58页课堂互动讲课堂互动讲练练例例例例3 3(2008年高考北京卷年高考北京卷)已知已知ABC的顶点的顶点A,B在椭圆在椭圆x23y24上,上,C在直线在直线l:yx2上,且上,且ABl.(1)当当AB边通过坐标原点边通过坐标原点O时,时,求求AB的长及的长及ABC的面积;的面积;(2)当当ABC90,且斜边,且斜边AC的长最大时,求的长最大时,求AB所在直线的方程所在直线的方程第33页/共58页课堂互动讲课堂互动讲练练【思路点

13、拨思路点拨】(1)首先由条件求出首先由条件求出直线直线AB的方程,然后联立直线与椭圆的的方程,然后联立直线与椭圆的方程,整理成关于方程,整理成关于x的一元二次方程,的一元二次方程,利用根与系数的关系求出弦长利用根与系数的关系求出弦长|AB|,进,进而求出而求出ABC的面积;的面积;(2)首先用待定系数法设出直线首先用待定系数法设出直线AB的方程,然后建立斜边长的方程,然后建立斜边长|AC|是某一变是某一变量的函数关系式,最后求出函数取最大量的函数关系式,最后求出函数取最大值时的变量值,进而求出直线值时的变量值,进而求出直线AB的方程,的方程,在解题时,注意运用函数的思想方法在解题时,注意运用函

14、数的思想方法第34页/共58页【解解】(1)因为因为ABl,且,且AB边通过边通过点点(0,0),所以,所以AB所在直线的方程为所在直线的方程为yx.设设A,B两点坐标分别为两点坐标分别为(x1,y1),(x2,y2)课堂互动讲课堂互动讲练练第35页/共58页因为因为A,B在椭圆上,在椭圆上,所以所以12m2640.设设A,B两点坐标分别为两点坐标分别为(x1,y1),(x2,y2)课堂互动讲课堂互动讲练练第36页/共58页课堂互动讲课堂互动讲练练第37页/共58页所以所以|AC|2|AB|2|BC|2m22m10(m1)211.所以当所以当m1时,时,AC边最长边最长(这这时时12640)此

15、时此时AB所在直线的方程为所在直线的方程为yx1.课堂互动讲课堂互动讲练练第38页/共58页圆锥曲线中求最值与范围问题是圆锥曲线中求最值与范围问题是高考题中的常考问题,解决此类问题,高考题中的常考问题,解决此类问题,一般有两个思路:一般有两个思路:(1)构造关于所求量构造关于所求量的函数,通过求函数的值域来获得问的函数,通过求函数的值域来获得问题的解;题的解;(2)构造关于所求量的不等式,构造关于所求量的不等式,通过解不等式来获得问题的解通过解不等式来获得问题的解课堂互动讲课堂互动讲练练考点四考点四圆锥曲线中的最值与范围圆锥曲线中的最值与范围第39页/共58页课堂互动讲课堂互动讲练练例例例例4

16、 4第40页/共58页【思路点拨思路点拨】(2)中求中求MN的长的长度的最小值,应表示出度的最小值,应表示出MN的长度,的长度,找出找出M、N两点的坐标两点的坐标课堂互动讲课堂互动讲练练【解解】(1)由已知得,椭圆由已知得,椭圆C的的左顶点为左顶点为A(2,0),上顶点为,上顶点为D(0,1),a2,b1.第41页/共58页课堂互动讲课堂互动讲练练第42页/共58页课堂互动讲课堂互动讲练练第43页/共58页课堂互动讲课堂互动讲练练第44页/共58页课堂互动讲课堂互动讲练练第45页/共58页课堂互动讲课堂互动讲练练第46页/共58页课堂互动讲课堂互动讲练练第47页/共58页【名师点评名师点评】(

17、2)中两种方法中两种方法都用到均值不等式,利用均值不等都用到均值不等式,利用均值不等式应注意等号成立的条件式应注意等号成立的条件课堂互动讲课堂互动讲练练第48页/共58页课堂互动讲课堂互动讲练练高考检阅高考检阅第49页/共58页消去消去y得得(a2b2)x22a2xa2(1b2)0,由由4a44(a2b2)a2(1b2)0,得得a2b21,设设P(x1,y1),Q(x2,y2),课堂互动讲课堂互动讲练练第50页/共58页x1x2y1y20,即即x1x2(1x1)(1x2)0.化简得化简得2x1x2(x1x2)10,4分分课堂互动讲课堂互动讲练练第51页/共58页课堂互动讲课堂互动讲练练第52页

18、/共58页1深刻理解曲线与方程的概念深刻理解曲线与方程的概念(1)“曲线上的点的坐标都是这个曲线上的点的坐标都是这个方程的解方程的解”,阐明曲线上没有坐标不满,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有点足方程的点,也就是说曲线上所有点适合这个条件而毫无例外适合这个条件而毫无例外(纯粹性纯粹性)(2)“以方程的解为坐标的点都在以方程的解为坐标的点都在曲线上曲线上”,阐明适合条件的所有点都在,阐明适合条件的所有点都在曲线上而毫无遗漏曲线上而毫无遗漏(完备性完备性)(3)由由(1)(2)两个条件可知,曲线两个条件可知,曲线的点集与方程的解集之间是一一对应的点集与方程的解集之间是一一对应的的规律方法总规律方法总结结第53页/共58页规律方法总规律方法总结结第54页/共58页规律方法总规律方法总结结第55页/共58页随堂即时巩随堂即时巩固固点击进入点击进入第56页/共58页课时活页训课时活页训练练点击进入点击进入第57页/共58页感谢您的观看。第58页/共58页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁