《圆锥曲线与方程复习课.pptx》由会员分享,可在线阅读,更多相关《圆锥曲线与方程复习课.pptx(56页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第1页/共56页【核心解读】1.椭圆中的特征三角形a2=c2+b2,ab0,a最大,其中a,b,c构成如图的直角三角形,我们把它称作“特征三角形”.第2页/共56页2.椭圆的焦点三角形设P为椭圆 (ab0)上任意一点(不在x轴上),F1,F2为焦点且F1PF2=,则PF1F2为焦点三角形.(1)焦点三角形的面积(2)焦点三角形的周长L=2a+2c.第3页/共56页3.双曲线渐近线的设法技巧(1)由双曲线标准方程求其渐近线方程时,最简单实用的办法是:把标准方程中的1换成0,即可得到两条渐近线的方程.如双曲线 (a0,b0)的渐近线方程为 (a0,b0),即 双曲线 (a0,b0)的渐近线方程为
2、(a0,b0),即(2)如果双曲线的渐近线为 时,它的双曲线方程可设为 (0).第4页/共56页4.共轭双曲线(1)双曲线与它的共轭双曲线有相同的渐近线.(2)双曲线与它的共轭双曲线有相同的焦距.(3)与 具有相同渐近线的双曲线系方程为5.抛物线方程的设法对顶点在原点,对称轴为坐标轴的抛物线方程,一般可设为y2=ax(a0)或x2=ay(a0).第5页/共56页6.抛物线的焦点弦问题抛物线过焦点F的弦长|AB|的一个重要结论.(1)y2=2px(p0)中,|AB|=x1+x2+p.(2)y2=-2px(p0)中,|AB|=-x1-x2+p.(3)x2=2py(p0)中,|AB|=y1+y2+p
3、.(4)x2=-2py(p0)中,|AB|=-y1-y2+p.第6页/共56页主题一 圆锥曲线的定义及应用【典例1】(2013 合肥高二检测)双曲线16x2-9y2=144的左、右两焦点分别为F1,F2,点P在双曲线上,且|PF1|PF2|=64,求PF1F2的面积.第7页/共56页【自主解答自主解答】双曲线方程双曲线方程16x16x2 2-9y-9y2 2=144=144化简为化简为即即a a2 2=9,b=9,b2 2=16,=16,所以所以c c2 2=25,=25,解得解得a=3,c=5,a=3,c=5,所以所以F F1 1(-5,0),F(-5,0),F2 2(5,0).(5,0).
4、设设|PF|PF1 1|=m,|PF|=m,|PF2 2|=n,|=n,由双曲线的定义知由双曲线的定义知|m-n|=2a=6,|m-n|=2a=6,又已知又已知m mn=64,n=64,第8页/共56页在在PFPF1 1F F2 2中,由余弦定理知中,由余弦定理知cosFcosF1 1PFPF2 2=所以所以F F1 1PFPF2 2=60,=60,所以所以=所以所以PFPF1 1F F2 2的面积为的面积为第9页/共56页【延伸探究】本题条件“|PF1|PF2|=64”改为PF1PF2,则PF1F2的面积是多少?【解析解析】双曲线双曲线16x16x2 2-9y-9y2 2=144,=144,
5、化简为化简为即即a a2 2=9,b=9,b2 2=16,=16,所以所以c c2 2=25,=25,即即a=3,c=5,a=3,c=5,所以所以|F|F1 1F F2 2|=10.|=10.记记|PF|PF1 1|=m,|PF|=m,|PF2 2|=n.|=n.第10页/共56页因为因为PFPF1 1PFPF2 2,所以有,所以有m m2 2+n+n2 2=(2c)=(2c)2 2=100,=100,由双曲线的定义得由双曲线的定义得|m-n|=2a=6,|m-n|=2a=6,所以所以(m-n)(m-n)2 2=36,=36,即即m m2 2+n+n2 2-2m-2mn=36,n=36,因此有
6、因此有m mn=32,n=32,所以所以第11页/共56页【方法技巧方法技巧】“回归定义回归定义”解题的三点应用解题的三点应用应用一:应用一:在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程;在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程;应用二:应用二:涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决;涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决;应用三:应用三:在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离
7、,结合几何图形,利用几何意义去解决在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.第12页/共56页【补偿训练】(2014长沙高二检测)过双曲线C:(a0,b0)的左焦点F1(-2,0),右焦点F2(2,0)分别作x轴的垂线,交双曲线的两渐近线于A,B,C,D四点,且四边形ABCD的面积为(1)求双曲线C的标准方程.(2)设P是双曲线C上一动点,以P为圆心,PF2为半径的圆交射线PF1于点M,求点M的轨迹方程.第13页/共56页【解析解析】(1)(1)由由 解得解得 由双曲线及其渐近线的对由双曲线及其渐近线的对称性知四边形称性知四边形A
8、BCDABCD为矩形,故四边形为矩形,故四边形ABCDABCD的面积为的面积为 所以所以 结合结合c=2c=2且且c c2 2=a=a2 2+b+b2 2得:得:a=1,a=1,所以双曲线所以双曲线C C的标准方程为的标准方程为(2)P(2)P是双曲线是双曲线C C上一动点,故上一动点,故|PF|PF1 1|-|PF|-|PF2 2|=2,|=2,又又M M点在射线点在射线PFPF1 1上,且上,且|PM|=|PF|PM|=|PF2 2|,故,故|F|F1 1M|=|PFM|=|PF1 1|-|PM|=|PF|-|PM|=|PF1 1|-|PF|-|PF2 2|=2,|=2,所以点所以点M M
9、的轨迹是以的轨迹是以F F1 1为圆心,半径为为圆心,半径为2 2的圆,其轨迹方程为的圆,其轨迹方程为(x+2)(x+2)2 2+y+y2 2=4.=4.第14页/共56页主题二 圆锥曲线的方程【典例2】求与椭圆 有相同的焦点,且离心率为 的椭圆的标准方程.【自主解答自主解答】因为因为所以所求椭圆的焦点为所以所求椭圆的焦点为设所求椭圆的方程为设所求椭圆的方程为 (a(ab b0),0),因为因为 所以所以a=5,a=5,所以所以b b2 2=a=a2 2-c-c2 2=20,=20,所以所求椭圆的方程为所以所求椭圆的方程为第15页/共56页【方法技巧方法技巧】处理圆锥曲线问题的策略处理圆锥曲线
10、问题的策略(1)(1)待定系数法求圆锥曲线的步骤待定系数法求圆锥曲线的步骤:定位置定位置:先确定圆锥曲线焦点的位置先确定圆锥曲线焦点的位置,从而确定方程的类型从而确定方程的类型;设方程设方程:根据方程的类型根据方程的类型,设出方程设出方程;求参数求参数:利用已知条件利用已知条件,求出求出a,ba,b或或p p的值的值;得方程得方程:代入所设方程代入所设方程,从而得出所求方程从而得出所求方程.第16页/共56页(2)(2)焦点位置不确定的曲线方程的设法焦点位置不确定的曲线方程的设法:椭圆方程可设为椭圆方程可设为mxmx2 2+ny+ny2 2=1(m0,n0,mn);=1(m0,n0,mn);双
11、曲线方程可设为双曲线方程可设为mxmx2 2+ny+ny2 2=1(m=1(m n0);n0:0直线与椭圆相交直线与椭圆相交;0;0 直线与双曲线相交直线与双曲线相交,但直线与双曲线相交不一定有但直线与双曲线相交不一定有0,0,如当直线与双曲线的渐近线平行时如当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点直线与双曲线相交且只有一个交点,故故00是直线与双曲线相交的充分不必要条件是直线与双曲线相交的充分不必要条件;0;0 直线与抛物线相交直线与抛物线相交,但直线与抛物线相交不一定有但直线与抛物线相交不一定有0,0,当直线与抛物线的对称轴平行时当直线与抛物线的对称轴平行时,直线与抛物
12、线相交且只有一个交点直线与抛物线相交且只有一个交点,故故00也仅是直线与抛物线相交的充分条件也仅是直线与抛物线相交的充分条件,而不是必要条件而不是必要条件.第33页/共56页相切相切:=0:=0直线与椭圆相切直线与椭圆相切;=0;=0直线与双曲线相切直线与双曲线相切;=0;=0直线与抛物线相切直线与抛物线相切.相离相离:0:0直线与椭圆相离直线与椭圆相离;0;0直线与双曲线相离直线与双曲线相离;0;b0)右焦点的直线 交M于A,B两点,P为AB的中点,且OP的斜率为(1)求M的方程.(2)C,D为M上的两点,若四边形ACBD的对角线CDAB,求四边形ACBD面积的最大值.第40页/共56页【自
13、主解答】【自主解答】(1)(1)设设A(xA(x1 1,y,y1 1),B(x),B(x2 2,y,y2 2),则则 -得得设设P(xP(x0 0,y,y0 0),因为,因为P P为为ABAB的中点,且的中点,且OPOP的斜率为的斜率为所以所以 即即又因为又因为 所以可以解得所以可以解得a a2 2=2b=2b2 2,即即a a2 2=2(a=2(a2 2-c-c2 2),即,即a a2 2=2c=2c2 2,又因为,又因为所以所以a a2 2=6=6,所以,所以M M的方程为的方程为第41页/共56页(2)(2)因为因为CDAB,CDAB,直线直线ABAB的方程为的方程为 所以设直线所以设直
14、线CDCD方方程为程为y=x+my=x+m,将,将 代入代入 得:得:解得解得x=0 x=0或或不妨令不妨令 所以可得所以可得将将y=x+my=x+m代入代入 得得3x3x2 2+4mx+2m+4mx+2m2 2-6=0-6=0,第42页/共56页设设C(xC(x3 3,y,y3 3),D(xD(x4 4,y,y4 4),则则|CD|=|CD|=又因为又因为=16m=16m2 2-12(2m-12(2m2 2-6)-6)0 0,即,即-3-3m m3 3,所以当,所以当m=0m=0时,时,CDCD取得最大值取得最大值4,4,所以四边形所以四边形ACBDACBD面积的最大值为面积的最大值为第43
15、页/共56页【方法技巧方法技巧】与圆锥曲线中有关的最值问题的三种解决方法与圆锥曲线中有关的最值问题的三种解决方法(1)(1)平面几何法平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解.(2)(2)目标函数法目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.第44页/共56页(3)(3)判别式法判别式法对二次
16、曲线求最值,往往由条件建立二次方程用判别式来求最值对二次曲线求最值,往往由条件建立二次方程用判别式来求最值.第45页/共56页【补偿训练】已知F1,F2为椭圆 的两个焦点,AB是过焦点F1的一条动弦,求ABF2面积的最大值.【解析解析】由题意,由题意,F F1 1(0(0,1)1),|F|F1 1F F2 2|=2|=2,由题意知直线斜率存在由题意知直线斜率存在,设直线设直线ABAB方程为方程为y=kx+1,y=kx+1,代入椭圆方程代入椭圆方程2x2x2 2+y+y2 2=2,=2,得得(k(k2 2+2)x+2)x2 2+2kx-1=0,+2kx-1=0,则则所以所以第46页/共56页当当
17、 即即k=0k=0时,时,有最大值为有最大值为第47页/共56页【强化训练】1.设抛物线的顶点在原点,准线方程为x=-2,则抛物线的方程是()A.y2=-8x B.y2=8x C.y2=-4x D.y2=4x【解析】【解析】选选B.B.因为抛物线的准线方程为因为抛物线的准线方程为x=-2,x=-2,所以抛物线的开所以抛物线的开口向右口向右.设抛物线的标准方程为设抛物线的标准方程为y y2 2=2px(p=2px(p0)0),则其准线方程,则其准线方程为为 所以所以 解得解得p=4.p=4.所以抛物线的标准方程为所以抛物线的标准方程为y y2 2=8x.=8x.第48页/共56页2(2014揭阳
18、高二检测)以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是()第49页/共56页【解析】【解析】选选C.C.设双曲线的标准方程是设双曲线的标准方程是 (a (a0,b0,b0),0),因为双曲线以因为双曲线以(-6,0),(6,0)(-6,0),(6,0)为焦点,且经过点为焦点,且经过点(-5(-5,2)2),所以所以解之得解之得a a2 2=20,b=20,b2 2=16,=16,因此,该双曲线的标准方程为因此,该双曲线的标准方程为第50页/共56页3.(2014 重庆高二检测)若双曲线 的离心率为则其渐近线方程为()【解析解析】选选B.B.由由 得渐近线方程为得渐
19、近线方程为第51页/共56页【补偿训练】已知双曲线 的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于()【解析解析】选选A.A.由双曲线的右焦点与抛物线由双曲线的右焦点与抛物线y y2 2=12x=12x的焦点重合,的焦点重合,知知 于是于是 因此该双曲线的渐近因此该双曲线的渐近线方程为线方程为 即即故该双曲线的焦点到其渐近线的距离为故该双曲线的焦点到其渐近线的距离为第52页/共56页4.(2013 福建高考)椭圆:(ab0)的左、右焦点分别为F1,F2,焦距为2c.若直线 与椭圆的一个交点M满足MF1F2=2MF2F1,则该椭圆的离心率等于_.第53页/共56页【
20、解析解析】MFMF1 1F F2 2是直线的倾斜角,所以是直线的倾斜角,所以MFMF1 1F F2 2=60=60,MFMF2 2F F1 1=30=30,所以,所以MFMF2 2F F1 1是直角三角形,是直角三角形,在在RtMFRtMF2 2F F1 1中,中,|F|F2 2F F1 1|=2c|=2c,|MF|MF1 1|=c|=c,|MF|MF2 2|=|=所以所以答案:答案:第54页/共56页5在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为 过F1的直线l交椭圆C于A,B两点,且ABF2的周长为16,那么椭圆C的方程为_.【解析解析】由椭圆的第一定义可知由椭圆的第一定义可知ABFABF2 2的周长为的周长为4a=164a=16,得,得a=4,a=4,又离心率为又离心率为 即即 所以所以 故故a a2 2=16,b=16,b2 2=a=a2 2-c-c2 2=16-=16-8=88=8,则椭圆,则椭圆C C的方程为的方程为答案:答案:第55页/共56页感谢您的观看。第56页/共56页